Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An elementary proof of the law of quadratic reciprocity over function fields


Authors: Chun-Gang Ji and Yan Xue
Journal: Proc. Amer. Math. Soc. 136 (2008), 3035-3039
MSC (2000): Primary 11R58; Secondary 11A15
DOI: https://doi.org/10.1090/S0002-9939-08-09327-1
Published electronically: April 30, 2008
MathSciNet review: 2407064
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P$ and $ Q$ be relatively prime monic irreducible polynomials in $ \mathbb{F}_{q}[T]$($ 2\nmid q$). In this paper, we give an elementary proof for the following law of quadratic reciprocity in $ \mathbb{F}_{q}[T]$:

$\displaystyle \left (\frac{Q}{P}\right )\left (\frac{P}{Q}\right )=(-1)^{\frac{\vert P\vert-1}{2}\frac{\vert Q\vert -1}{2} },$

where $ \left (\frac{Q}{P}\right )$ is the Legendre symbol.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen, I, II, Math. Z. 19 (1924), 153-246. MR 1544651, MR 1544652
  • 2. L. Carlitz, The arithmetic of polynomials in a Galois field, Amer. J. Math. 54 (1932), 39-50. MR 1506871
  • 3. L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137-168. MR 1545872
  • 4. R. Dedekind, Abriss einer Theorie der höheren Congruenzen in Bezug auf einer reellen Primzahl-Modulus, J. Reine Angew. Math. 54 (1857), 1-26.
  • 5. Ke Qin Feng and Linsheng Yin, An elementary proof of the law of quadratic reciprocity in $ \mathbb{F}_{q}(T)$, Sichuan Daxue Xuebao, Special Issue 26 (1989), 36-40. MR 1059674 (91i:11178)
  • 6. K. D. Merrill and L. H. Walling, On quadratic reciprocity over function fields, Pacific J. Math. 173 (1996), 147-150. MR 1387795 (97a:11011)
  • 7. M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657 (2003d:11171)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R58, 11A15

Retrieve articles in all journals with MSC (2000): 11R58, 11A15


Additional Information

Chun-Gang Ji
Affiliation: Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
Email: cgji@njnu.edu.cn

Yan Xue
Affiliation: Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
Email: xueyan1981521@163.com

DOI: https://doi.org/10.1090/S0002-9939-08-09327-1
Keywords: Rational function fields, Legendre symbol, quadratic reciprocity law
Received by editor(s): July 6, 2007
Published electronically: April 30, 2008
Additional Notes: The first author is partially supported by grants No. 10771103 and 10201013 from NNSF of China and Jiangsu planned projects for postdoctoral research funds
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society