Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A sheaf of Hochschild complexes on quasi-compact opens


Author: Wendy Lowen
Journal: Proc. Amer. Math. Soc. 136 (2008), 3045-3050
MSC (2000): Primary 18E15, 18F20
DOI: https://doi.org/10.1090/S0002-9939-08-09471-9
Published electronically: April 17, 2008
MathSciNet review: 2407066
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a scheme $ X$, we construct a sheaf $ \mathbf{C}$ of complexes on $ X$ such that for every quasi-compact open $ U \subset X$, $ \mathbf{C}(U)$ is quasi-isomorphic to the Hochschild complex of $ U$ (Lowen and Van den Bergh, 2005). Since $ \mathbf{C}$ is moreover acyclic for taking sections on quasi-compact opens, we obtain a local to global spectral sequence for Hochschild cohomology if $ X$ is quasi-compact.


References [Enhancements On Off] (What's this?)

  • 1. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Springer-Verlag, Berlin, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269. MR 0354652 (50:7130)
  • 2. M. Gerstenhaber and S. D. Schack, The cohomology of presheaves of algebras. I. Presheaves over a partially ordered set, Trans. Amer. Math. Soc. 310 (1988), no. 1, 135-165. MR 965749 (89k:16052)
  • 3. E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, preprint hep-th/9403055.
  • 4. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119-221. MR 0102537 (21:1328)
  • 5. V. Hinich, Deformations of sheaves of algebras, Adv. Math. 195 (2005), no. 1, 102-164. MR 2145794 (2007d:13021)
  • 6. B. Keller, Derived invariance of higher structures on the Hochschild complex, preprint, http://www.math.jussieu.fr/~keller/publ/dih.pdf.
  • 7. M. Kontsevich, Deformation quantization of algebraic varieties, Lett. Math. Phys. 56 (2001), no. 3, 271-294, EuroConférence Moshé Flato 2000, Part III (Dijon). MR 1855264 (2002j:53117)
  • 8. -, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216. MR 2062626
  • 9. W. Lowen, Algebroid prestacks and deformations of ringed spaces, Trans. Amer. Math. Soc. 360 (2008), 1631-1660.
  • 10. W. Lowen and M. Van den Bergh, A local to global spectral sequence for Hochschild cohomology, in preparation.
  • 11. -, Hochschild cohomology of abelian categories and ringed spaces, Advances in Math. 198 (2005), no. 1, 172-221. MR 2183254 (2007d:18017)
  • 12. -, Deformation theory of abelian categories, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5441-5483. MR 2238922
  • 13. B. Mitchell, Rings with several objects, Advances in Math. 8 (1972), 1-161. MR 0294454 (45:3524)
  • 14. R. G. Swan, Hochschild cohomology of quasiprojective schemes, J. Pure Appl. Algebra 110 (1996), no. 1, 57-80. MR 1390671 (97j:19003)
  • 15. M. Van den Bergh, On global deformation quantization in the algebraic case, J. Algebra 315 (2007), no. 1, 326-395. MR 2344349
  • 16. A. Yekutieli, Deformation quantization in algebraic geometry, Advances in Math. 198 (2005), no. 1, 383-432. MR 2183259 (2006j:53131)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 18E15, 18F20

Retrieve articles in all journals with MSC (2000): 18E15, 18F20


Additional Information

Wendy Lowen
Affiliation: Departement DWIS, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
Email: wlowen@vub.ac.be

DOI: https://doi.org/10.1090/S0002-9939-08-09471-9
Received by editor(s): September 18, 2006
Received by editor(s) in revised form: June 25, 2007, and July 10, 2007
Published electronically: April 17, 2008
Additional Notes: The author is a Postdoctoral fellow FWO/CNRS. She acknowledges the hospitality of the Institut de Mathématiques de Jussieu (IMJ) and of the Institut des Hautes Études Scientifiques (IHES) during her postdoctoral fellowship with CNRS
Communicated by: Ted Chinburg
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society