On the isotropy constant of random convex sets

Author:
David Alonso-Gutiérrez

Journal:
Proc. Amer. Math. Soc. **136** (2008), 3293-3300

MSC (2000):
Primary 52A20

Published electronically:
April 17, 2008

MathSciNet review:
2407095

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the symmetric convex hull of independent random vectors uniformly distributed on the unit sphere of . We prove that, for every , the isotropy constant of is bounded by a constant with high probability, provided that .

**1.**Keith Ball,*Normed spaces with a weak-Gordon-Lewis property*, Functional analysis (Austin, TX, 1987/1989) Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 36–47. MR**1126735**, 10.1007/BFb0090210**2.**J. Bourgain,*On the distribution of polynomials on high-dimensional convex sets*, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 127–137. MR**1122617**, 10.1007/BFb0089219**3.**J. Bourgain, J. Lindenstrauss, and V. D. Milman,*Minkowski sums and symmetrizations*, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 44–66. MR**950975**, 10.1007/BFb0081735**4.**E. D. Gluskin,*Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces*, Mat. Sb. (N.S.)**136(178)**(1988), no. 1, 85–96 (Russian); English transl., Math. USSR-Sb.**64**(1989), no. 1, 85–96. MR**945901****5.**B. Klartag,*On convex perturbations with a bounded isotropic constant*, Geom. Funct. Anal.**16**(2006), no. 6, 1274–1290. MR**2276540**, 10.1007/s00039-006-0588-1**6.**Klartag, B.; Kozma, G.*On the hyperplane conjecture on random convex sets*. (Preprint).**7.**H. König, M. Meyer, and A. Pajor,*The isotropy constants of the Schatten classes are bounded*, Math. Ann.**312**(1998), no. 4, 773–783. MR**1660231**, 10.1007/s002080050245**8.**A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann,*Smallest singular value of random matrices and geometry of random polytopes*, Adv. Math.**195**(2005), no. 2, 491–523. MR**2146352**, 10.1016/j.aim.2004.08.004**9.**V. D. Milman and A. Pajor,*Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed 𝑛-dimensional space*, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR**1008717**, 10.1007/BFb0090049

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
52A20

Retrieve articles in all journals with MSC (2000): 52A20

Additional Information

**David Alonso-Gutiérrez**

Affiliation:
Institute of Mathematics, Universidad de Zaragoza, 50009 Zaragoza, Spain

Email:
daalonso@unizar.es

DOI:
http://dx.doi.org/10.1090/S0002-9939-08-09487-2

Received by editor(s):
July 10, 2007

Published electronically:
April 17, 2008

Additional Notes:
The author was supported by an FPU Scholarship from MEC (Spain), MCYT Grants (Spain) MTM2007-61446, DGA E-64 and by Marie Curie RTN CT-2004-511953

Communicated by:
N. Tomczak-Jaegermann

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.