Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dense-lineability in spaces of continuous functions


Author: L. Bernal-González
Journal: Proc. Amer. Math. Soc. 136 (2008), 3163-3169
MSC (2000): Primary 46E10; Secondary 26A16, 26A27, 26E10
DOI: https://doi.org/10.1090/S0002-9939-08-09495-1
Published electronically: April 25, 2008
MathSciNet review: 2407080
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we provide a general method to prove that certain nonlinear families of continuous functions contain dense linear manifolds. An application is furnished.


References [Enhancements On Off] (What's this?)

  • 1. R.M. Aron, V.I. Gurariy and J.B. Seoane, Lineability and spaceability of sets of functions on $ \mathbb{R}$, Proc. Amer. Math. Soc. 133 (2005), 795-803. MR 2113929 (2006i:26004)
  • 2. R. Aron, D. Pérez-Garcıa and J.B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Math. 175 (2006), 83-90. MR 2261701 (2007k:42007)
  • 3. F. Bayart, Topological and algebraic genericity of divergence and universality, Studia Math. 167 (2005), 161-181. MR 2134382 (2006b:46024)
  • 4. L. Bernal-González, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. 340 (2008), 1284-1295.
  • 5. R.B. Darst, Most infinitely differentiable functions are nowhere analytic, Canad. Math. Bull. 16 (1973), 597-598. MR 0346112 (49:10838)
  • 6. P. du Bois-Reymond, Über den Gültigkeitsbereich der Taylor'schen Reihenentwicklung, Math. Ann. 21 (1883), 109-117. MR 1510189
  • 7. P. Enflo and V.I. Gurariy, On lineability and spaceability of sets in function spaces, preprint.
  • 8. V.P. Fonf, V.I. Gurariy and M.I. Kadec, An infinite dimensional subspace of $ C[0,1]$ consisting of nowhere differentiable functions, C.R. Acad. Bulgare Sci. 52 (1999), nos. 11-12, 13-16. MR 1738120 (2000j:26006)
  • 9. F.J. Garcıa-Pacheco, N. Palmberg and J.B. Seoane-Sepúlveda, Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal. Appl. 326 (2007), 929-939. MR 2280953 (2007i:26003)
  • 10. V.I. Gurariy, Subspaces and bases in spaces of continuous functions (Russian), Dokl. Akad. Nauk SSSR 167 (1966), 971-973. MR 0199674 (33:7817)
  • 11. V.I. Gurariy, Linear spaces composed of everywhere nondifferentiable functions, C.R. Acad. Bulgare Sci. 44 (1991), no. 5, 13-16. MR 1127022 (92j:46046)
  • 12. V. Gurariy and L. Quarta, On lineability of sets of continuous functions, J. Math. Anal. Appl. 294 (2004), 62-72. MR 2059788 (2005c:46026)
  • 13. S. Hencl, Isometrical embeddings of separable Banach spaces into the set of nowhere approximately differentiable and nowhere Hölder functions, Proc. Amer. Math. Soc. 128 (2000), 3505-3511. MR 1707147 (2001b:46026)
  • 14. J. Horváth, ``Topological Vector Spaces and Distributions'', Vol. 1, Addison-Wesley, Reading, MA, 1966. MR 0205028 (34:4863)
  • 15. M. Lerch, Ueber die Nichtdifferentiirbarkeit bewisser Funktionen, J. Reine Angew. Math. 103 (1888), 126-138.
  • 16. D. Morgenstern, Unendlich oft differenzierbare nicht-analytische Funktionen, Math. Nachr. 12 (1954), 74. MR 0064830 (16:342b)
  • 17. J.C. Oxtoby, ``Measure and Category'', Springer, Berlin, 1980. MR 584443 (81j:28003)
  • 18. L. Rodrıguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions, Proc. Amer. Math. Soc. 123 (1995), 3649-3654. MR 1328375 (96d:46007)
  • 19. H. Salzmann and K. Zeller, Singularitäten unendlicht oft differenzierbarer Funktionen, Math. Z. 62 (1955), 354-367. MR 0071479 (17:134b)
  • 20. A.C.M. Van Rooij and W.H. Schikhoff, ``A Second Course on Real Functions'', Cambridge University Press, Cambridge, 1982.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E10, 26A16, 26A27, 26E10

Retrieve articles in all journals with MSC (2000): 46E10, 26A16, 26A27, 26E10


Additional Information

L. Bernal-González
Affiliation: Facultad de Matemáticas, Departamento de Análisis Matemático, Universidad de Sevilla, Apdo. 1160, Avda. Reina Mercedes, Sevilla-41080, Spain
Email: lbernal@us.es

DOI: https://doi.org/10.1090/S0002-9939-08-09495-1
Keywords: Dense-lineability, algebra of functions, continuous nondifferentiable functions, nowhere analytic functions, H\"older functions
Received by editor(s): June 19, 2007
Published electronically: April 25, 2008
Additional Notes: The author has been partially supported by the Plan Andaluz de Investigación de la Junta de Andalucía FQM-127, and by MEC Grants MTM2006-13997-C02-01 and Acción Especial MTM2004-21420-E
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society