Cutoff resolvent estimates and the semilinear Schrödinger equation

Author:
Hans Christianson

Journal:
Proc. Amer. Math. Soc. **136** (2008), 3513-3520

MSC (2000):
Primary 35Q55

DOI:
https://doi.org/10.1090/S0002-9939-08-09290-3

Published electronically:
June 10, 2008

MathSciNet review:
2415035

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation. If the resolvent estimate has a loss when compared to the optimal, non-trapping estimate, there is a corresponding loss in regularity in the local smoothing estimate. As an application, we apply well-known techniques to obtain well-posedness results for the semi-linear Schrödinger equation.

**[BoTz]**BOUCLET, J-M. AND TZVETKOV, N. Strichartz Estimates for Long Range Perturbations.*Amer. J. Math.***129**, No. 6, 2007, pp. 1565-1609. MR**2369889****[Bur]**BURQ, N. Smoothing Effect for Schrödinger Boundary Value Problems.*Duke Math. Journal.***123**, No. 2, 2004, pp. 403-427. MR**2066943 (2006e:35026)****[BGT1]**BURQ, N., G´ERARD, P., AND TZVETKOV, N. Strichartz Inequalities and the Nonlinear Schrödinger Equation on Compact Manifolds.*Amer. J. Math.***126**, No. 3, 2004, pp. 569-605. MR**2058384 (2005h:58036)****[BGT2]**BURQ, N., G´ERARD, P., AND TZVETKOV, N. On Nonlinear Schrödinger Equations in Exterior Domains.*Ann. Inst. H. Poincaré Anal. Non Linéaire***21**, 2004, pp. 295-318. MR**2068304 (2005g:35264)****[Caz]**CAZENAVE, T.*Semilinear Schrödinger Equations*. Courant Lecture Notes in Mathematics, AMS, 2003. MR**2002047 (2004j:35266)****[Chr1]**CHRISTIANSON, H. Semiclassical Non-concentration near Hyperbolic Orbits.*J. Funct. Anal.***246**, 2007, no. 2, pp. 145-195. MR**2321040****[Chr2]**CHRISTIANSON, H. Quantum Monodromy and Non-concentration Near Semi-hyperbolic Orbits, preprint.`http://www.math.mit.edu/hans/papers/qmnc.pdf`**[Chr3]**CHRISTIANSON, H. Dispersive Estimates for Manifolds with One Trapped Orbit. To appear in*Commun. PDE*.`http://www.math.mit.edu/hans/papers/sm.pdf`**[Doi]**DOI, S.-I. Smoothing Effects of Schrödinger Evolution Groups on Riemannian Manifolds.*Duke Mathematical Journal.***82**, No. 3, 1996, pp. 679-706. MR**1387689 (97f:58141)****[HTW]**HASSELL, A., TAO, T., AND WUNSCH, J. Sharp Strichartz Estimates on Non-trapping Asymptotically Conic Manifolds.*Amer. J. Math.***128**, No. 4, 2006, pp. 963-1024. MR**2251591 (2007d:58053)****[NoZw]**NONNENMACHER, S. AND ZWORSKI, M. Quantum decay rates in chaotic scattering. Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2006. MR**2276087 (2007i:35177)****[Vod]**VODEV, G. Exponential Bounds of the Resolvent for a Class of Noncompactly Supported Perturbations of the Laplacian.*Math. Res. Lett.***7**(2000), no. 2-3, pp. 287-298. MR**1764323 (2001e:35134)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35Q55

Retrieve articles in all journals with MSC (2000): 35Q55

Additional Information

**Hans Christianson**

Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Email:
hans@math.mit.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09290-3

Received by editor(s):
June 29, 2007

Published electronically:
June 10, 2008

Additional Notes:
This research was partially conducted during the period the author was employed by the Clay Mathematics Institute as a Liftoff Fellow.

Communicated by:
Hart F. Smith

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.