Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Representation of measures with polynomial denseness in $ \mathbf{L}_{p}\, (\mathbb{R}, d\mu)$, $ 0<p<\infty$, and its application to determinate moment problems


Author: Andrew G. Bakan
Journal: Proc. Amer. Math. Soc. 136 (2008), 3579-3589
MSC (2000): Primary 46E30, 41A10; Secondary 44A60, 41A65
DOI: https://doi.org/10.1090/S0002-9939-08-09418-5
Published electronically: June 4, 2008
MathSciNet review: 2415042
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It has been proved that algebraic polynomials $ \mathcal{P}$ are dense in the space $ L^{p}({\mathbb{R}},d\mu)$, $ p\in(0, \infty)$, iff the measure $ \mu$ is representable as $ d\mu=w^p\, d\nu$ with a finite non-negative Borel measure $ \nu$ and an upper semi-continuous function $ w:\mathbb{R}\to\mathbb{R}^+:\,=[0,\infty)$ such that $ \mathcal{P}$ is a dense subset of the space $ C^0_w :\,= \{f\in C(\mathbb{R}) : w(x)f (x)\to 0 \,$   as$ \, \vert x\vert\to\infty \}$ equipped with the seminorm $ \Vert f \Vert _{w}:= \sup_{x \in{\mathbb{R}}} w(x)\vert f(x)\vert$. The similar representation $ (1+x^2)d\mu=w^2 d\nu$ ( $ (1+x)d\mu=w^2 d\nu$) with the same $ \nu$ and $ w$ ( $ w(x)=0, x < 0$, and $ \mathcal{P}$ is also a dense

subset of $ {C^0_{\sqrt{x}\,\cdot\, w}}$) corresponds to all those measures (supported by $ \mathbb{R}^+$) that are uniquely determined by their moments on $ \mathbb{R}$ ( $ \mathbb{R}^+$). The proof is based on de Branges' theorem (1959) on weighted polynomial approximation. A more general question on polynomial denseness in a separable Fréchet space in the sense of Banach $ L^\Phi({\mathbb{R}},d\mu)$ has also been examined.


References [Enhancements On Off] (What's this?)

  • 1. N. I. Akhiezer, On the weighted approximation of continuous functions on the real axis, Uspekhi Mat. Nauk 11(1956), 3-43; AMS Transl. Ser. 2, 22(1962), 95-137.
  • 2. N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
  • 3. G. P. Akilov and L. V. Kantorovich, Functional analysis in normed spaces, 2nd ed., Pergamon Press, New York, 1982. MR 664597 (83h:46002)
  • 4. E. J. Akutowicz, Weighted approximation on the real axis, Jahresber. Deutsch. Math.-Verein. 68(1966), 113-139. MR 0200645 (34:535)
  • 5. A. G. Bakan, Polynomial Approximation in $ L_p (\mathbb{R}^1 , d \mu ) $I., Preprint, Nat. Acad. Sci. of Ukraine, Inst. of Math., Kiev, 1998, No. 7, 45 pp. MR 1734341 (2000m:41002)
  • 6. A. Bakan, Polynomial density in $ L_p (\mathbb{R}^1 , d \mu ) $ and representation of all measures which generate a determinate Hamburger moment problem, in: Approximation, Optimization and Mathematical Economics (Pointe-a-Pitre, 1999), 37-46, Physica, Heidelberg, 2001. MR 1842874 (2002i:41004)
  • 7. A. G. Bakan, Criterion of polynomial density and the general form of a continuous linear functional on the space $ C^0_{\rm {w}}$, Ukraın. Mat. Zh. 54(2002), No. 5, 610-622 (Russian); English transl.: Ukrainian Math. J. 54(2002), No. 5, 750-762. MR 1956458 (2004a:46028)
  • 8. A. Bakan and St. Ruscheweyh, Representation of measures with simultaneous polynomial denseness in $ L_p (\mathbb{R} , d \mu )$, $ 1 \leq p < \infty $, Arkiv für matematik 43(2005), No. 2, 221-249. MR 2172989 (2006k:28003)
  • 9. J. Berezanskii, Z. Sheftel, and G. Us, Functional Analysis, vol. 1, Birkhäuser, Basel, 1996. MR 1397267 (97i:46001a)
  • 10. Ch. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. Inst. Fourier 31(1981), No. 3, 99-114. MR 638619 (84i:44006)
  • 11. Ch. Berg and M. Thill, Rotation invariant moment problems, Acta Math. 167(1991), 207-227. MR 1120603 (92j:44004)
  • 12. Ch. Berg, Moment problems and polynomial approximation, Ann. Fac. Sci. Toulouse, Stieltjes special issue (1996), 9-32. MR 1462705 (98h:44002)
  • 13. S. Bernstein, Le probleme de l'approximation des fonctions continues sur tout l'axe reel at l'une de ses applications, Bull. Math. de France 52(1924), 399-410. MR 1504852
  • 14. A. Borichev and M. Sodin, The Hamburger moment problem and weighted polynomial approximation on discrete subsets of the real line, J. d'Anal. Math. 76(1998), 219-264. MR 1676987 (2000g:44017)
  • 15. L. de Branges, The Bernstein problem, Proc. Amer. Math. Soc. 10(1959), 825-832. MR 0114080 (22:4907)
  • 16. R. E. Edwards, Functional Analysis, Holt, Rinehart & Winston, 1965. MR 0221256 (36:4308)
  • 17. R. Engelking, General Topology, Polish Scientific Publishers, 1985. MR 0500780 (58:18316b)
  • 18. P. K. Geetha, On Bernstein approximation problem, J. Math. Anal. Appl. 25(1969), 450-469. MR 0255827 (41:487)
  • 19. P. R. Halmos, Measure Theory, Holt, Rinehart & Winston, 1950. MR 0033869 (11:504d)
  • 20. W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, 1976. MR 0460672 (57:665)
  • 21. B. Ja. Levin, Density of functions, quasianalyticity and subharmonic majorants, Zapiski nauchn. seminarov LOMI, 170(1989), 102-156 (Russian); English transl.: J. Soviet Math. 63(1993), 171-201. MR 1039577 (91g:46045)
  • 22. D. S. Lubinsky, Bernstein's weighted approximation on $ \mathbb{R}$ still has problems, Electron. Trans. Numer. Anal. 25(2006), 166-177. MR 2280371 (2007k:41024)
  • 23. S. N. Mergelyan, Weighted approximation by polynomials, Uspekhi Mat. Nauk 11(1956), 107-152 (Russian); English transl.: AMS Transl. Ser. 2, 10(1958), 59-106. MR 0094633 (20:1146)
  • 24. L. D. Pitt, Weighted $ L^p$ closure theorems for spaces of entire functions, Isr. J. Math. 24(1976), 94-118. MR 0477726 (57:17239)
  • 25. M. Riesz, Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Ac. Sci. Szeged 1(1923), 209-225.
  • 26. H. Schaefer, Topological Vector Spaces, Macmillan, N.Y., 1966. MR 0193469 (33:1689)
  • 27. M. Sodin, Which perturbations of quasianalytic weights preserve quasianaliticity? How to use de Branges' theorem, J. d'Anal. Math. 69(1996), 293-309. MR 1428104 (97k:41015)
  • 28. M. Sodin and P. Yuditskii, Another approach to de Branges' theorem on weighted polynomial approximation, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 11(1997), 221-227. MR 1476719 (99c:41014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E30, 41A10, 44A60, 41A65

Retrieve articles in all journals with MSC (2000): 46E30, 41A10, 44A60, 41A65


Additional Information

Andrew G. Bakan
Affiliation: Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska Street 3, Kyiv 01601, Ukraine
Email: andrew@bakan.kiev.ua

DOI: https://doi.org/10.1090/S0002-9939-08-09418-5
Keywords: Spaces of measurable functions, approximation by polynomials, moment problems
Received by editor(s): August 21, 2007
Published electronically: June 4, 2008
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society