Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On a class of ideals of the Toeplitz algebra on the Bergman space


Author: Trieu Le
Journal: Proc. Amer. Math. Soc. 136 (2008), 3571-3577
MSC (2000): Primary 47B35; Secondary 47B47
Published electronically: June 6, 2008
MathSciNet review: 2415041
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{T}$ denote the full Toeplitz algebra on the Bergman space of the unit ball $ \mathbb{B}_n$. For each subset $ G$ of $ L^{\infty}$, let $ \mathfrak{CI}(G)$ denote the closed two-sided ideal of $ \mathfrak{T}$ generated by all $ T_fT_g-T_gT_f$ with $ f,g\in G$. It is known that $ \mathfrak{CI}(C(\overline{\mathbb{B}}_n))=\mathcal{K}$, the ideal of compact operators, and $ \mathfrak{CI}(C(\mathbb{B}_n)\cap L^{\infty})=\mathfrak{T}$. Despite these ``extreme cases'', there are subsets $ G$ of $ L^{\infty}$ so that $ \mathcal{K}\subsetneq\mathfrak{CI}(G)\subsetneq\mathfrak{T}$. This paper gives a construction of a class of such subsets.


References [Enhancements On Off] (What's this?)

  • [1] L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433–439. MR 0322595
  • [2] Trieu Le, On the commutator ideal of the Toeplitz algebra on the Bergman space of the unit ball in $ \mathbb{C}^n$, J. Operator Theory, to appear.
  • [3] Young Joo Lee, Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces, Canad. Math. Bull. 41 (1998), no. 2, 129–136. MR 1624149, 10.4153/CMB-1998-020-7
  • [4] Walter Rudin, Function theory in the unit ball of 𝐶ⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
  • [5] Daniel Suárez, The Toeplitz algebra on the Bergman space coincides with its commutator ideal, J. Operator Theory 51 (2004), no. 1, 105–114. MR 2055807

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B35, 47B47

Retrieve articles in all journals with MSC (2000): 47B35, 47B47


Additional Information

Trieu Le
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: trieu.le@utoronto.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09569-5
Received by editor(s): August 16, 2007
Published electronically: June 6, 2008
Communicated by: Marius Junge
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.