Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 
 

 

Extreme points of lattice intervals in the Minkowski-Rådström-Hörmander lattice


Authors: Jerzy Grzybowski and Ryszard Urbanski
Journal: Proc. Amer. Math. Soc. 136 (2008), 3957-3962
MSC (2000): Primary 46B20, 52A05, 54B20
DOI: https://doi.org/10.1090/S0002-9939-08-09376-3
Published electronically: June 3, 2008
MathSciNet review: 2425736
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we characterize extreme points of any symmetric interval in the Minkowski-Rådström-Hörmander lattice $ \widetilde{X}$ over any Hausdorff topological vector space $ X$ (Theorem 1). Then we prove that the unit ball in the Minkowski-Rådström-Hörmander lattice $ \widetilde{X}$ over any normed space $ X$, dim$ X\geq 2,$ has exactly two extreme points (Theorem 2).


References [Enhancements On Off] (What's this?)

  • 1. G. Birkhoff, Lattice Theory, $ 4^{{\rm th}}$ ed., Amer. Math. Soc., Colloquium Publications Vol. 25, 1979. MR 0598630 (82a:06001)
  • 2. F. H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley Pub. Comp., New York, 1983. MR 709590 (85m:49002)
  • 3. R. Cristescu, Topological Vector Spaces, Noordhoff International Publishing Leyden, The Netherlands, 1977. MR 0454552 (56:12802)
  • 4. G. Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Berkeley and Los Angeles, Univ. of California Press, vol. 2, part 1 (1967), 351-372. MR 0228252 (37:3835)
  • 5. V. F. Demyanov and A. M. Rubinov, Quasidifferentiability and Related Topics, Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Dortrecht-Boston-London, 2001. MR 1766791 (2001f:49032)
  • 6. L. Drewnowski, Additive and countably additive correspondences, Comment. Math. 19 (1976), 25-54. MR 0422564 (54:10550)
  • 7. P. Goossens, Completeness of spaces of closed bounded convex sets, Journal of Math. Analysis and Appl. 115 (1) (1986), 192-201. MR 835594 (87i:46001)
  • 8. J. Grzybowski and R. Urbański, On inclusion and summands of bounded closed convex sets, Acta Math. Hungar 106 (4) (2005), 293-300. MR 2131334 (2005k:52005)
  • 9. L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv för Mathematik 3 (1954), 181-186. MR 0068112 (16:831e)
  • 10. D. Pallaschke, R. Urbański, Pairs of Compact Convex Sets, Fractional Arithmetic with Convex Sets, Mathematics and Its Applications, Kluwer Academic Publisher, Dortrecht-Boston-London, 2002. MR 1961230 (2004c:46012)
  • 11. P. Praksash and M. R. Sertel, Hyperspaces of topological vector spaces: their embedding in topological vector spaces, Proc. Amer. Math. Soc. 61 (1976), 163-168. MR 0425881 (54:13831)
  • 12. H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169. MR 0045938 (13:659c)
  • 13. S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273. MR 1203283 (93m:52012)
  • 14. R. Urbański, A generalization of the Minkowski-Rå dström-Hörmander Theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715. MR 0442646 (56:1027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B20, 52A05, 54B20

Retrieve articles in all journals with MSC (2000): 46B20, 52A05, 54B20


Additional Information

Jerzy Grzybowski
Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
Email: jgrz@amu.edu.pl

Ryszard Urbanski
Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
Email: rich@amu.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-08-09376-3
Keywords: Minkowski--R{\aa }dstr{\"o}m--H{\"o}rmander lattices, extreme points, pairs of closed bounded convex sets
Received by editor(s): March 13, 2007
Received by editor(s) in revised form: October 4, 2007
Published electronically: June 3, 2008
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 Jerzy Grzybowski and Ryszard Urbański

American Mathematical Society