Generalized Cauchy difference equations. II

Author:
Bruce Ebanks

Journal:
Proc. Amer. Math. Soc. **136** (2008), 3911-3919

MSC (2000):
Primary 39B22

DOI:
https://doi.org/10.1090/S0002-9939-08-09379-9

Published electronically:
May 20, 2008

MathSciNet review:
2425731

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main result is an improvement of previous results on the equation

**1.**J. Aczél,*A Short Course on Functional Equations Based upon Recent Applications to the Social and Behavioral Sciences*, Reidel/Kluwer, Dordrecht/Boston, 1987. MR**875412 (88d:39013)****2.**B. R. Ebanks, On Heuvers' logarithmic functional equation,*Results Math.***42**(2002), 37-41. MR**1934223 (2003j:39070)****3.**B. R. Ebanks, Generalized Cauchy difference functional equations,*Aequationes Math.***70**(2005), 154-176. MR**2167992 (2006d:39040)****4.**B. R. Ebanks, P. L. Kannappan, and P. K. Sahoo, Cauchy differences that depend on the product of arguments,*Glas. Mat. Ser. III***27(47)**(1992), 251-261. MR**1244642 (94k:39045)****5.**I. Ecsedi, On the functional equation ,*Mat. Lapok***21**(1970), 369-374 (1971). MR**0306754 (46:5876)****6.**K. J. Heuvers, Another logarithmic functional equation,*Aequationes Math.***58**(1999), 260-264. MR**1715396 (2001a:39055)****7.**A. Járai,*Regularity Properties of Functional Equations in Several Variables*, Springer, New York, 2005. MR**2130441 (2006b:39001)****8.**A. Járai, Gy. Maksa, and Zs. Páles, On Cauchy-differences that are also quasisums,*Publ. Math. Debrecen***65**(2004), 381-398. MR**2107955 (2005h:39042)****9.**K. Lajkó, Special multiplicative deviations,*Publ. Math. Debrecen***21**(1974), 39-45. MR**0364932 (51:1186)****10.**Gy. Maksa, On the functional equation ,*Publ. Math. Debrecen***24**(1977), 25-29. MR**0447867 (56:6177)****11.**W. Rudin,*Principles of Mathematical Analysis,*McGraw Hill, New York, 1976. MR**0385023 (52:5893)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
39B22

Retrieve articles in all journals with MSC (2000): 39B22

Additional Information

**Bruce Ebanks**

Affiliation:
Department of Mathematics and Statistics, P.O. Box MA, Mississippi State University, Mississippi State, Mississippi 39762

Email:
ebanks@math.msstate.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09379-9

Keywords:
Cauchy difference,
cocycle equation,
functional independence,
Pexider equation,
implicit function theorem,
philandering,
regularity properties,
functional equations

Received by editor(s):
June 28, 2006

Received by editor(s) in revised form:
September 20, 2007

Published electronically:
May 20, 2008

Communicated by:
David Preiss

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.