Parametric representation and asymptotic starlikeness in
Authors:
Ian Graham, Hidetaka Hamada, Gabriela Kohr and Mirela Kohr
Journal:
Proc. Amer. Math. Soc. 136 (2008), 39633973
MSC (2000):
Primary 32H02; Secondary 30C45
Published electronically:
June 9, 2008
MathSciNet review:
2425737
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we consider the notion of asymptotic starlikeness in the Euclidean space . In the case of the maximum norm, asymptotic starlikeness was introduced by Poreda. We have modified his definition slightly, adding a boundedness condition. We prove that the notion of parametric representation which arises in Loewner theory can be characterized in terms of asymptotic starlikeness; i.e. they are equivalent notions. (A regularity assumption of Poreda is not needed.) In particular, starlike mappings and spirallike mappings of type are asymptotically starlike. Therefore this notion is a natural generalization of starlikeness. However, we give an example of a spirallike mapping with respect to a linear operator which is not asymptotically starlike. In the case of one complex variable, any function in the class is asymptotically starlike; however, in dimension this is no longer true.
 1.
H. Cartan, Sur la possibilité d'étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes, 129155, Note added to P. Montel, Leçons sur les fonctions univalentes ou multivalentes, GauthierVillars, Paris, 1933.
 2.
Mark
Elin, Simeon
Reich, and David
Shoikhet, Complex dynamical systems and the geometry of domains in
Banach spaces, Dissertationes Math. (Rozprawy Mat.)
427 (2004), 62. MR 2071666
(2005g:47118), http://dx.doi.org/10.4064/dm42701
 3.
Sheng
Gong, Convex and starlike mappings in several complex
variables, Mathematics and its Applications (China Series),
vol. 435, Kluwer Academic Publishers, Dordrecht, 1998. With a preface
by David Minda. MR 1689825
(2000c:32054)
 4.
Ian
Graham, Hidetaka
Hamada, and Gabriela
Kohr, Parametric representation of univalent mappings in several
complex variables, Canad. J. Math. 54 (2002),
no. 2, 324–351. MR 1892999
(2003b:32018), http://dx.doi.org/10.4153/CJM20020112
 5.
I. Graham, H. Hamada, G. Kohr and M. Kohr, Asymptotically spirallike mappings in several complex variables, J. Anal. Math., to appear.
 6.
Ian
Graham, Hidetaka
Hamada, Gabriela
Kohr, and Ted
J. Suffridge, Extension operators for locally univalent
mappings, Michigan Math. J. 50 (2002), no. 1,
37–55. MR
1897032 (2003e:32029), http://dx.doi.org/10.1307/mmj/1022636749
 7.
Ian
Graham and Gabriela
Kohr, Geometric function theory in one and higher dimensions,
Monographs and Textbooks in Pure and Applied Mathematics, vol. 255,
Marcel Dekker Inc., New York, 2003. MR 2017933
(2004i:32002)
 8.
Ian
Graham, Gabriela
Kohr, and Mirela
Kohr, Loewner chains and parametric representation in several
complex variables, J. Math. Anal. Appl. 281 (2003),
no. 2, 425–438. MR 1982664
(2004b:32024), http://dx.doi.org/10.1016/S0022247X(03)001276
 9.
Ian
Graham, Gabriela
Kohr, and Mirela
Kohr, Basic properties of Loewner chains in several complex
variables, Geometric function theory in several complex variables,
World Sci. Publ., River Edge, NJ, 2004, pp. 165–181. MR 2115789
(2005k:32024)
 10.
Kenneth
R. Gurganus, Φlike holomorphic functions in
𝐶ⁿ and Banach spaces, Trans.
Amer. Math. Soc. 205 (1975), 389–406. MR 0374470
(51 #10670), http://dx.doi.org/10.1090/S00029947197503744701
 11.
Hidetaka
Hamada and Gabriela
Kohr, Subordination chains and the growth theorem of spirallike
mappings, Mathematica 42(65) (2000), no. 2,
153–161 (2001). MR 1988620
(2004c:32043)
 12.
T. Liu, The growth theorems and covering theorems for biholomorphic mappings on classical domains, Doctoral Thesis, Univ. Sci. Tech. China, 1989.
 13.
J.
A. Pfaltzgraff, Subordination chains and univalence of holomorphic
mappings in 𝐶ⁿ, Math. Ann. 210 (1974),
55–68. MR
0352510 (50 #4997)
 14.
Christian
Pommerenke, Univalent functions, Vandenhoeck & Ruprecht,
Göttingen, 1975. With a chapter on quadratic differentials by Gerd
Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. MR 0507768
(58 #22526)
 15.
T.
Poreda, On the univalent holomorphic maps of the unit polydisc in
𝐶ⁿ which have the parametric representation. I. The
geometrical properties, Ann. Univ. Mariae CurieSkłodowska
Sect. A 41 (1987), 105–113 (1989) (English, with
Polish summary). MR 1049182
(91m:32021)
 16.
T.
Poreda, On the univalent holomorphic maps of the unit polydisc in
𝐶ⁿ which have the parametric representation. II. The
necessary conditions and the sufficient conditions, Ann. Univ. Mariae
CurieSkłodowska Sect. A 41 (1987), 115–121
(1989) (English, with Polish summary). MR 1049183
(91m:32022)
 17.
Tadeusz
Poreda, On generalized differential equations in Banach
spaces, Dissertationes Math. (Rozprawy Mat.) 310
(1991), 50. MR
1104523 (92i:34079)
 18.
Simeon
Reich and David
Shoikhet, Nonlinear semigroups, fixed points, and geometry of
domains in Banach spaces, Imperial College Press, London, 2005. MR 2022955
(2006g:47105)
 19.
T.
J. Suffridge, The principle of subordination applied to functions
of several variables, Pacific J. Math. 33 (1970),
241–248. MR 0261040
(41 #5660)
 20.
T.
J. Suffridge, Starlike and convex maps in Banach spaces,
Pacific J. Math. 46 (1973), 575–589. MR 0374914
(51 #11110)
 21.
T.
J. Suffridge, Starlikeness, convexity and other geometric
properties of holomorphic maps in higher dimensions, Complex analysis
(Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), Springer, Berlin,
1977, pp. 146–159. Lecture Notes in Math., Vol. 599. MR 0450601
(56 #8894)
 1.
 H. Cartan, Sur la possibilité d'étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes, 129155, Note added to P. Montel, Leçons sur les fonctions univalentes ou multivalentes, GauthierVillars, Paris, 1933.
 2.
 M. Elin, S. Reich and D. Shoikhet, Complex dynamical systems and the geometry of domains in Banach spaces, Dissertationes Mathematicae, 427 (2004), 162. MR 2071666 (2005g:47118)
 3.
 S. Gong, Convex and starlike mappings in several complex variables, Kluwer Acad. Publ., Dordrecht, 1998. MR 1689825 (2000c:32054)
 4.
 I. Graham, H. Hamada and G. Kohr, Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54 (2002), 324351. MR 1892999 (2003b:32018)
 5.
 I. Graham, H. Hamada, G. Kohr and M. Kohr, Asymptotically spirallike mappings in several complex variables, J. Anal. Math., to appear.
 6.
 I. Graham, H. Hamada, G. Kohr, T.J. Suffridge, Extension operators for locally univalent mappings, Michigan Math. J., 50 (2002), 3755. MR 1897032 (2003e:32029)
 7.
 I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Marcel Dekker, Inc., New York, 2003. MR 2017933 (2004i:32002)
 8.
 I. Graham, G. Kohr and M. Kohr, Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 281 (2003), 425438. MR 1982664 (2004b:32024)
 9.
 I. Graham, G. Kohr and M. Kohr, Basic properties of Loewner chains in several complex variables. In: Geometric Function Theory in Several Complex Variables, C.H. FitzGerald and S. Gong, eds., 165181, World Sci. Publ., 2004. MR 2115789 (2005k:32024)
 10.
 K. Gurganus, like holomorphic functions in and Banach spaces, Trans. Amer. Math. Soc., 205 (1975), 389406. MR 0374470 (51:10670)
 11.
 H. Hamada and G. Kohr, Subordination chains and the growth theorem of spirallike mappings, Mathematica (Cluj), 42 (65) (2000), 153161. MR 1988620 (2004c:32043)
 12.
 T. Liu, The growth theorems and covering theorems for biholomorphic mappings on classical domains, Doctoral Thesis, Univ. Sci. Tech. China, 1989.
 13.
 J.A. Pfaltzgraff, Subordination chains and univalence of holomorphic mappings in , Math. Ann., 210 (1974), 5568. MR 0352510 (50:4997)
 14.
 C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. MR 0507768 (58:22526)
 15.
 T. Poreda, On the univalent holomorphic maps of the unit polydisc in which have the parametric representation. I. The geometrical properties, Ann. Univ. Mariae Curie Sklodowska, Sect. A, 41 (1987), 105113. MR 1049182 (91m:32021)
 16.
 T. Poreda, On the univalent holomorphic maps of the unit polydisc in which have the parametric representation. II. The necessary conditions and the sufficient conditions, Ann. Univ. Mariae Curie Sklodowska, Sect. A, 41 (1987), 115121. MR 1049183 (91m:32022)
 17.
 T. Poreda, On generalized differential equations in Banach spaces, Dissertationes Mathematicae, 310 (1991), 150. MR 1104523 (92i:34079)
 18.
 S. Reich and D. Shoikhet, Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces, Imperial College Press, London, 2005. MR 2022955 (2006g:47105)
 19.
 T.J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., 33 (1970), 241248. MR 0261040 (41:5660)
 20.
 T.J. Suffridge, Starlike and convex maps in Banach spaces, Pacific J. Math., 46 (1973), 575589. MR 0374914 (51:11110)
 21.
 T.J. Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Mathematics, 599, 146159, SpringerVerlag, 1976. MR 0450601 (56:8894)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
32H02,
30C45
Retrieve articles in all journals
with MSC (2000):
32H02,
30C45
Additional Information
Ian Graham
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
Email:
graham@math.toronto.edu
Hidetaka Hamada
Affiliation:
Faculty of Engineering, Kyushu Sangyo University, 31 Matsukadai 2Chome, Higashiku Fukuoka 8138503, Japan
Email:
h.hamada@ip.kyusanu.ac.jp
Gabriela Kohr
Affiliation:
Faculty of Mathematics and Computer Science, BabeşBolyai University, 1 M. Kogălniceanu Str., 400084 ClujNapoca, Romania
Email:
gkohr@math.ubbcluj.ro
Mirela Kohr
Affiliation:
Faculty of Mathematics and Computer Science, BabeşBolyai University, 1 M. Kogălniceanu Str., 400084 ClujNapoca, Romania
Email:
mkohr@math.ubbcluj.ro
DOI:
http://dx.doi.org/10.1090/S0002993908093921
PII:
S 00029939(08)093921
Keywords:
Asymptotic starlikeness,
biholomorphic mapping,
Loewner chain,
parametric representation,
spirallike mapping,
starlike mapping.
Received by editor(s):
December 6, 2006
Received by editor(s) in revised form:
October 15, 2007
Published electronically:
June 9, 2008
Additional Notes:
The first author was partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant A9221
The second author was partially supported by GrantinAid for Scientific Research (C) no. 19540205 from the Japan Society for the Promotion of Science, 2007
The third and fourth authors were partially supported by the Romanian Ministry of Education and Research, CNCSIS Grant type A, 1472/2007
Communicated by:
MeiChi Shaw
Article copyright:
© Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
