Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on scaling asymptotics for Bohr-Sommerfeld Lagrangian submanifolds

Author: Roberto Paoletti
Journal: Proc. Amer. Math. Soc. 136 (2008), 4011-4017
MSC (2000): Primary 53D12, 53D50; Secondary 81S10, 81Q20, 81Q70
Published electronically: June 2, 2008
MathSciNet review: 2425742
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the asymptotic expansions describing the quantum states associated to Bohr Sommerfeld Lagrangian submanifolds of a compact Kähler manifold, in the context of geometric quantization. More precisely, it provides an improvement on a result of the work of Debernardi and the author (2006), describing a natural factorization of the expansion and providing certain remainder estimates.

References [Enhancements On Off] (What's this?)

  • [1] S. Bates, A. Weinstein, Lectures on the geometry of quantization, Berkeley Mathematics Lecture Notes 8, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Math., Berkeley, CA, 1997. MR 1806388 (2002f:53151)
  • [2] D. Borthwick, T. Paul, A. Uribe, Legendrian distributions with applications to relative Poincaré series, Invent. Math. 122 (2) (1995), 359-402. MR 1358981 (97a:58188)
  • [3] L. Boutet de Monvel, J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976), 123-164. MR 0590106 (58:28684)
  • [4] M. Christ, Slow off-diagonal decay for Szegö kernels associated to smooth Hermitian line bundles, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., vol. 320, Amer. Math. Soc., Providence, RI, 2003, pp. 77-89. MR 1979933 (2005b:32038)
  • [5] M. Debernardi, R. Paoletti, Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds, Comm. Math. Phys. 267 (1) (2006), 227-263. MR 2238910 (2007g:58028)
  • [6] V. Guillemin, S. Sternberg, The Gelfand-Cetlin system and quantization of the complex flag manifold, J. Func. Anal. 52 (1983), 106-128. MR 705993 (85e:58069)
  • [7] R. Paoletti, Scaling limits for equivariant Szegö kernels, J. Symplectic Geom., to appear.
  • [8] B. Shiffman, S. Zelditch, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math. 544 (2002), 181-222. MR 1887895 (2002m:58043)
  • [9] A. Weinstein, Symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 5 (1) (1981), 1-13. MR 614310 (83a:58044)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53D12, 53D50, 81S10, 81Q20, 81Q70

Retrieve articles in all journals with MSC (2000): 53D12, 53D50, 81S10, 81Q20, 81Q70

Additional Information

Roberto Paoletti
Affiliation: Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 Milano, Italy

Keywords: Geometric quantization, Lagrangian submanifolds, asymptotics
Received by editor(s): October 1, 2007
Published electronically: June 2, 2008
Communicated by: Jon G. Wolfson
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society