Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nested set complexes for posets and the Bier construction


Author: Juliane Lehmann
Journal: Proc. Amer. Math. Soc. 136 (2008), 3785-3793
MSC (2000): Primary 06A07; Secondary 57Q05
DOI: https://doi.org/10.1090/S0002-9939-08-09503-8
Published electronically: May 20, 2008
MathSciNet review: 2425716
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize the concept of combinatorial nested set complexes to posets and exhibit the topological relationship between the arising nested set complexes and the order complex of the underlying poset. In particular, a sufficient condition is given so that this relationship is actually a subdivision.

We use the results to generalize the proof method of Čukić and Delucchi, so far restricted to semilattices, for a result of Björner, Paffenholz, Sjöstrand and Ziegler on the Bier construction on posets.


References [Enhancements On Off] (What's this?)

  • 1. Thomas Bier, A remark on Alexander duality and the disjunct join, Preprint (1992).
  • 2. Anders Björner, Andreas Paffenholz, Jonas Sjöstrand, and Günter M. Ziegler, Bier spheres and posets, Discrete Comput. Geom. 34 (2005), no. 1, 71-86. MR 2140883 (2006k:06005)
  • 3. Sonja Lj. Čukić and Emanuele Delucchi, Simplicial shellable spheres via combinatorial blowups, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2403-2414 (electronic). MR 2302561 (2008b:55027)
  • 4. B. A. Davey and H. A. Priestley, Introduction to lattices and order, second ed., Cambridge University Press, New York, 2002. MR 1902334 (2003e:06001)
  • 5. Mark de Longueville, Bier spheres and barycentric subdivision, J. Combin. Theory Ser. A 105 (2004), no. 2, 355-357. MR 2046088 (2005d:52016)
  • 6. Emanuele Delucchi, Subdivision of complexes of k-trees, Preprint (2005), available at arXiv:math/0509378v1.
  • 7. Eva Maria Feichtner, Complexes of trees and nested set complexes, Pacific J. Math. 227 (2006), no. 2, 271-286. MR 2263017 (2008a:05275)
  • 8. Eva Maria Feichtner and Dmitry N. Kozlov, Incidence combinatorics of resolutions, Selecta Math. (N.S.) 10 (2004), no. 1, 37-60. MR 2061222 (2006k:06008)
  • 9. Eva Maria Feichtner and Irene Müller, On the topology of nested set complexes, Proc. Amer. Math. Soc. 133 (2005), no. 4, 999-1006 (electronic). MR 2117200 (2006c:06005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 06A07, 57Q05

Retrieve articles in all journals with MSC (2000): 06A07, 57Q05


Additional Information

Juliane Lehmann
Affiliation: Fachbereich Mathematik, Universität Bremen, 28359 Bremen, Germany
Email: jlehmann@math.uni-bremen.de

DOI: https://doi.org/10.1090/S0002-9939-08-09503-8
Received by editor(s): September 19, 2007
Published electronically: May 20, 2008
Communicated by: Paul Goerss
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society