Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Specification property and distributional chaos almost everywhere

Authors: Piotr Oprocha and Marta Stefánková
Journal: Proc. Amer. Math. Soc. 136 (2008), 3931-3940
MSC (2000): Primary 37B05; Secondary 54H20
Published electronically: June 24, 2008
MathSciNet review: 2425733
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Our main result shows that a continuous map $ f$ acting on a compact metric space $ (X,\rho )$ with a weaker form of specification property and with a pair of distal points is distributionally chaotic in a very strong sense. Strictly speaking, there is a distributionally scrambled set $ S$ dense in $ X$ which is the union of disjoint sets homeomorphic to Cantor sets so that, for any two distinct points $ u,v\in S$, the upper distribution function is identically 1 and the lower distribution function is zero at some $ \varepsilon >0$. As a consequence, we describe a class of maps with a scrambled set of full Lebesgue measure in the case when $ X$ is the $ k$-dimensional cube $ I^{k}$. If $ X=I$, then we can even construct scrambled sets whose complements have zero Hausdorff dimension.

References [Enhancements On Off] (What's this?)

  • 1. M. Babilonová, The bitransitive continuous maps of the interval are conjugate to maps extremely chaotic a.e., Acta Math. Univ. Comen. 69 (2000) (2), 229-232. MR 1819523 (2002f:37062)
  • 2. M. Babilonová-Štefánková, Extreme chaos and transitivity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1695-1700. MR 2015619 (2004i:37075)
  • 3. W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math. 79 (1975), 81-92. MR 0370540 (51:6767) w
  • 4. F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets, Colloquium Math. 110 (2008) 293-361. MR 2353910
  • 5. A. M. Blokh, On graph-realizable sets of periods, J. Difference Equ. Appl. 9 (2003), 343-357. MR 1990341 (2004j:37072)
  • 6. R. Bowen, Topological entropy and axiom A, in ``Global Analysis'', Proceedings of Symposia on Pure Mathematics, vol. 14, Amer. Math. Soc., Providence, RI, 1970. MR 0262459 (41:7066)
  • 7. A. M. Bruckner and T. Hu, On scrambled sets for chaotic functions, Trans. Amer. Math. Soc. 301 (1987), 289-297. MR 879574 (88f:26003)
  • 8. M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces, Springer-Verlag, Berlin, 1976. MR 0457675 (56:15879)
  • 9. W. J. Gorman III, The homeomorphic transformation of $ c$-sets into $ d$-sets, Proc. Amer. Math. Soc. 17 (1966), 825-830. MR 0207921 (34:7734)
  • 10. W. Huang and X. Ye, Homeomorphisms with the whole compacta being scrambled sets, Ergod. Th. Dynam. Sys. 21 (2001), 77-91. MR 1826661 (2002d:37020)
  • 11. I. Kan, A chaotic function possessing a scrambled set with positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45-49. MR 749887 (86b:26009a)
  • 12. K. Kuratowski, Topology, Vol. II, Academic Press and Polish Scientific Publishers, 1968. MR 0259835 (41:4467)
  • 13. G. F. Liao, L. D. Wang, X. D. Duan, A chaotic function with a distributively scrambled set of full Lebesgue measure, Nonlinear Analysis - Theory, Methods & Applications 66 (2007), 2274-2280. MR 2311031 (2008c:37020)
  • 14. M. Misiurewicz, Chaos almost everywhere, in: ``Iteration Theory and Its Functional Equations'' (ed., G. Targonski et al.), Lecture Notes in Mathematics 1163, 125-130, Springer, Berlin, 1985. MR 829765 (87e:58152)
  • 15. J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941), 874-920. MR 0005803 (3:211b)
  • 16. B. Schweizer and J. Smıtal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737-854. MR 1227094 (94k:58091)
  • 17. K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc. 190 (1974), 285-299. MR 0352411 (50:4898)
  • 18. J. Smıtal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), 54-56. MR 677230 (84h:26008)
  • 19. J. Smıtal, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 50-54. MR 749888 (86b:26009b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37B05, 54H20

Retrieve articles in all journals with MSC (2000): 37B05, 54H20

Additional Information

Piotr Oprocha
Affiliation: Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Marta Stefánková
Affiliation: Mathematical Institute, Silesian University, 74601 Opava, Czech Republic

Received by editor(s): September 27, 2007
Published electronically: June 24, 2008
Communicated by: Jane M. Hawkins
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society