Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Numerical peak points and numerical Šilov boundary for holomorphic functions


Author: Sung Guen Kim
Journal: Proc. Amer. Math. Soc. 136 (2008), 4339-4347
MSC (2000): Primary 46A22; Secondary 46G25
DOI: https://doi.org/10.1090/S0002-9939-08-09402-1
Published electronically: June 3, 2008
MathSciNet review: 2431048
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we characterize the numerical and numerical strong-peak points for $ {\mathcal A}_{\infty}(B_{E}:E)$ when $ E$ is the complex space $ l_1$ or $ C(K)$. We also prove that $ \{(x, x^*)\in \Pi(l_1):\vert x^*(e_n)\vert=1~$for all$ ~n\in \mathbb{N} \}$ is the numerical Šilov boundary for $ {\mathcal A}_{\infty}(B_{l_1}:l_1).$


References [Enhancements On Off] (What's this?)

  • 1. M. D. Acosta, Boundaries for spaces of holomorphic functions on $ C(K),$ Publ. Res. Inst. Math. Sci. 42 (2006), 27-44. MR 2215434 (2007j:46073)
  • 2. M. D. Acosta and S. G. Kim, Denseness of holomorphic functions attaining their numerical radii, Israel J. Math. 161 (2007), 373-386. MR 2350167
  • 3. M. D. Acosta and S. G. Kim, Numerical boundaries for some classical Banach spaces, to appear in J. Math. Anal. Appl.
  • 4. M. D. Acosta and M. L. Lourenco, Shilov boundary for holomorphic functions on some classical Banach spaces, Studia Math. 179 (2007), no. 1, 27-39. MR 2291721
  • 5. E. Bishop, A minimal boundary for function algebras, Pacific J. Math. 9 (1959), 629-642. MR 0109305 (22:191)
  • 6. F. F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Ser. 10 (Cambridge Univ. Press, 1973). MR 0442682 (56:1063)
  • 7. T. W. Gamelin, Uniform Algebra, Chelsea, New York, 1984.
  • 8. J. Globevnik, Boundaries for polydisc algebras in infinite dimensions, Math. Proc. Cambridge Philos. Soc. 85 (1979), 291-303. MR 516088 (80i:46046)
  • 9. L. Harris, The numerical range of holomorphic functions in Banach spaces, Amer. J. Math. 93 (1971), 1005-1119. MR 0301505 (46:663)
  • 10. R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. Math. 27 (1979), 373-379. MR 557405 (80m:46018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46A22, 46G25

Retrieve articles in all journals with MSC (2000): 46A22, 46G25


Additional Information

Sung Guen Kim
Affiliation: Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
Email: sgk317@knu.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-08-09402-1
Keywords: Numerical peak points, numerical Silov boundaries
Received by editor(s): September 9, 2006
Received by editor(s) in revised form: July 16, 2007, October 18, 2007, and October 23, 2007
Published electronically: June 3, 2008
Additional Notes: The author thanks the referee for invaluable suggestions and for help with an earlier version of this paper.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society