A RIGIDITY THEOREM FOR HOLOMORPHIC GENERATORS ON THE HILBERT BALL

MARK ELIN, MARINA LEVENSHTEIN, SIMEON REICH, AND DAVID SHOIKHET

(Communicated by N. Tomczak-Jaegermann)

Abstract. We present a rigidity property of holomorphic generators on the open unit ball B of a Hilbert space H. Namely, if $f \in \text{Hol}(B, H)$ is the generator of a one-parameter continuous semigroup $\{F_t\}_{t \geq 0}$ on B such that for some boundary point $\tau \in \partial B$, the admissible limit $K\text{-lim}_{z \to \tau} \frac{f(z)}{\|z - \tau\|} = 0$, then f vanishes identically on B.

Let H be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$. If H is finite dimensional, we will identify H with \mathbb{C}^n. We denote by $\text{Hol}(D, E)$ the set of all holomorphic mappings on a domain $D \subset H$ which map D into a subset E of H, and put $\text{Hol}(D) := \text{Hol}(D, D)$.

We are concerned with the problem of finding conditions for a mapping $F \in \text{Hol}(D, E)$ to coincide identically with a given holomorphic mapping on D when they behave similarly in a neighborhood of a boundary point $\tau \in \partial D$.

A number of basic results in this direction are due to D. M. Burns and S. G. Krantz [6]. They establish conditions at a boundary point for a holomorphic self-mapping F of the open unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ to coincide with the identity mapping (see Proposition 1 below). Then they generalize this fact to the n-dimensional case: for holomorphic self-mappings of the open unit ball (see Proposition 3 below) and of strongly pseudoconvex domains in \mathbb{C}^n. Further developments of this theme are presented by X. J. Huang in [13], where he obtains similar results for weakly pseudoconvex domains. More recently, L. Baracco, D. Zaitsev and G. Zampieri [3] have proved local boundary rigidity theorems for mappings defined only on one side as germs at a boundary point, and extended their results from boundaries of domains to submanifolds of higher codimension. More higher-dimensional results can be found, for instance, in [2] and [11].

In this paper we present a rigidity theorem for holomorphic generators on the open unit ball B of a Hilbert space H which generalizes the analogous theorem for the one-dimensional case [8, 17, 7] and properly contains the above-mentioned Burns–Krantz theorem for the open unit ball in \mathbb{C}^n.
We begin by recalling the result of D. M. Burns and S. G. Krantz [6] for holomorphic self-mappings of the open unit disk Δ.

Proposition 1. Let $F \in \text{Hol}(\Delta)$. If the unrestricted limit

$$\lim_{z \to \tau} \frac{F(z) - z}{(z - \tau)^3} = 0$$

for some $\tau \in \partial \Delta$, then $F \equiv I$ on Δ.

This assertion also holds when the unrestricted limit is replaced with the angular one (see Proposition 2 below) has been proved in [8] and [17]. To formulate it, we first [127x368]F [127x636]Proposition 1. [127x654]morphic self-mappings of the open unit disk Δ.

$S = \{S_t\}_{t \geq 0}$ has been proved in [8] and [17]. To formulate it, we first [127x368]F [127x636]Proposition 1. [127x654]morphic self-mappings of the open unit disk Δ.

$S = \{S_t\}_{t \geq 0}$ has been proved in [8] and [17]. To formulate it, we first [127x368]F [127x636]Proposition 1. [127x654]morphic self-mappings of the open unit disk Δ.
Proposition 2. Let \(g \in \text{Hol}(\Delta, \mathbb{C}) \) be the generator of a one-parameter continuous semigroup. Suppose that

\[
\angle \lim_{z \to 1} \frac{g(z)}{|z - 1|^3} = 0.
\]

Then \(g \equiv 0 \) in \(\Delta \).

Here we take this opportunity to present a completely different proof of this assertion.

Proof. Suppose that \(g \) does not vanish identically on \(\Delta \). Condition (2) implies that \(\tau = 1 \) is the Denjoy–Wolff point of the semigroup generated by \(g \) (see Lemma 3 in [10]). So, \(g \) has no null point in \(\Delta \) (see Theorem 1 in [10]). Consequently, \(g \) can be represented by the Berkson–Porta formula

\[
g(z) = -(1 - z)^2 p(z), \quad z \in \Delta,
\]

where \(p \) is a holomorphic function of nonnegative real part which does not vanish in \(\Delta \).

Consider the function

\[
g_1(z) := \frac{-z}{(1 - z)^2} \cdot g(z) = zp(z), \quad z \in \Delta.
\]

This function is the holomorphic generator of a semigroup on \(\Delta \) with its Denjoy–Wolff point at zero.

However, the equality

\[
\angle \lim_{z \to 1} \frac{g_1(z)}{z - 1} = \angle \lim_{z \to 1} \frac{-z}{(1 - z)^3} \cdot g(z) = 0
\]

implies that \(g_1(1) = 0 \) and \(g_1'(1) = 0 \). Therefore \(\tau = 1 \), too, is the Denjoy–Wolff point of the semigroup generated by \(g_1 \) (again by Lemma 3 in [10]). The contradiction we have reached proves that \(g \equiv 0 \) on \(\Delta \). \(\square \)

As we have already mentioned above, D. M. Burns and S. G. Krantz generalize their one-dimensional result for holomorphic self-mappings of \(\Delta \) (Proposition 1) to the open unit ball \(B := \{ x \in \mathbb{C}^n : |x| < 1 \} \), where \(|x| = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2} \).

Proposition 3 (see [6]). Let \(B \subset \mathbb{C}^n \) be the open unit ball. Let \(\Phi : B \to B \) be a holomorphic mapping of the ball to itself such that

\[
\Phi(x) = 1 + (x - 1) + O \left(||x - 1||^4 \right)
\]
as \(x \to 1 \). (Here \(1 \) denotes the distinguished boundary point \(1 = (1, 0, \ldots, 0) \) of the ball.) Then \(\Phi(x) = x \) on the ball.

At this juncture, a natural question arises: does the rigidity result for generators (Proposition 2) admit an analogous generalization to the open unit balls of either \(\mathbb{C}^n \) or a Hilbert space \(H \)? The following theorem gives an affirmative answer to this question. Moreover, we show that it is sufficient to consider the \(K \)-limit instead of the unrestricted one in the assumption of the theorem.

Let \(B \) be the open unit ball of the Hilbert space \(H \). For \(\alpha > 1 \), we denote by

\[
D_0(\tau) := \left\{ x \in B : |\langle x, \tau \rangle| < \frac{\alpha}{2} (1 - ||x||^2) \right\}
\]
To this end, we fix a point \(y \) in the Korányi approach regions at \(\tau \in \partial \mathbb{B} \) and say that a mapping \(f : \mathbb{B} \to H \) has a \(K \)-limit \(M \) at \(\tau \) if it tends to \(M \) along every curve ending at \(\tau \) and lying in a Korányi region \(D_\alpha(\tau) \).

Theorem. Let \(f \in \text{Hol}(\mathbb{B}, H) \) be the generator of a one-parameter continuous semigroup on \(\mathbb{B} \). If for some \(\tau \in \partial \mathbb{B} \), the \(K \)-limit

\[
\lim_{x \to \tau} \frac{f(x)}{\|x - \tau\|^3} = 0,
\]

then \(f \equiv 0 \) on \(\mathbb{B} \).

Proof. We prove this assertion by reduction to the one-dimensional case. Namely, we consider the restriction of the orthogonal projection of an appropriate modification of the generator \(f \) to a one-dimensional disk touching \(\mathbb{B} \) at the point \(\tau \in \partial \mathbb{B} \).

To this end, we fix a point \(y \in \mathbb{B} \) and define the mapping

\[
M_y(x) := \frac{y - P_y x - sQ_y x}{1 - \langle x, y \rangle}, \quad x \in \mathbb{B},
\]

where \(P_y \) is the orthogonal projection of \(H \) onto the subspace generated by \(y \) (i.e. \(P_0 \equiv 0 \)) and \(P_y x = \frac{\langle x, y \rangle}{\|y\|^2} y \) for \(y \neq 0 \), \(Q_y = I - P_y \) and \(s = \sqrt{1 - \|y\|^2} \). This mapping is an automorphism of \(\mathbb{B} \) satisfying \(M_y^{-1} = M_y \) (cf. p. 98 in [12] and p. 25 in [20]).

Denote by \(U_y \) a unitary operator on \(\mathbb{B} \) such that \(U_y \tau = M_y \tau \). Then the mapping

\[
m := M_y \circ U_y
\]

is a biholomorphism of \(\mathbb{B} \) onto \(\mathbb{B} \). Therefore, by Lemma 3.7.1 on p. 30 of [9], the mapping

\[
f_m(w) = [m'(w)]^{-1} f(m(w)), \quad w \in \mathbb{B},
\]

is a holomorphic generator on \(\mathbb{B} \).

Substituting

\[
[m'(w)]^{-1} = [m^{-1}(x)]_{x=m(w)}' = U_y^* M_y'(m(w))
\]

in (4), we have

\[
f_m(w) = U_y^* M_y'(m(w)) f(m(w)), \quad w \in \mathbb{B}.
\]

Now we define a holomorphic function \(g \) on the unit disk \(\Delta \) of the complex plane \(\mathbb{C} \) by

\[
g(z) := \langle f_m(z \tau), \tau \rangle, \quad z \in \Delta.
\]

This function \(g \) is a holomorphic generator on \(\Delta \). To see this, note that by the Theorem in [4], the generator \(f_m \) satisfies the inequality

\[
\text{Re}(f_m(x) - (1 - \|x\|^2)f_m(0), x) \geq 0 \quad \text{for all} \quad x \in \mathbb{B}.
\]

In particular, for \(x = z \tau \), where \(z \in \Delta \),

\[
\text{Re}((f_m(z \tau), \tau)\overline{\tau}) \geq (1 - |z|^2) \text{Re}((f_m(0), \tau)\overline{\tau});
\]

i.e.,

\[
\text{Re}(g(z)\overline{\tau}) \geq (1 - |z|^2) \text{Re}(g(0)\overline{\tau}) \quad \text{for all} \quad z \in \Delta,
\]

and, consequently, by the same theorem (see [4]), \(g \) is indeed a holomorphic generator on \(\Delta \). (We remark in passing that this also follows from the characterization of generators in terms of their \(\rho \)-monotonicity [18] [16].)
We claim that under our assumptions, \(g \equiv 0 \) on \(\Delta \). Indeed,
\[
g(z) = (U_y^* M_y'(m(z\tau))) f(m(z\tau)), \tau) = \langle M_y'(m(z\tau)) f(m(z\tau)), U_y \tau \rangle
\]
(7)
and, consequently,
\[
\frac{g(z)}{|z - 1|^3} = \frac{1}{|z - 1|^3} \frac{\langle f(m(z\tau)), [M_y'(m(z\tau))]^* U_y \tau \rangle}{\|m(z\tau) - \tau\|_3^3} \left\langle \frac{f(m(z\tau))}{\|m(z\tau) - \tau\|_3^3}, [M_y'(m(z\tau))]^* U_y \tau \right\rangle.
\]
(8)
Note that each automorphism \(h \) of \(\mathbb{B} \) is the restriction to \(\mathbb{B} \) of a holomorphic mapping defined either on the larger ball \(B(0, R) \) centered at zero of radius \(R = \frac{1}{\|h^{-1}(0)\|} \) if \(h(0) \neq 0 \) or on all of \(H \) if \(h \) fixes the origin. So, \(M_y \) and \(m \) are, in fact, holomorphic mappings defined either on the open ball \(B(0, R) \) of radius \(R = \frac{1}{\|y\|} > 1 \) if \(y \neq 0 \) or on \(H \) if \(y = 0 \). Hence the first factor on the right-hand side of equality 8 has a finite limit as \(z \to 1 \), and so has the second factor of the inner product.

Now we show that the first factor of the last inner product in 8 tends to zero as \(z \to 1 \) nontangentially in \(\Delta \).

For \(z \) close enough to 1 in the nontangential approach region
\[
\Gamma_k = \left\{ z \in \Delta : \frac{|z - 1|}{1 - |z|} < k \right\}, \quad k > 1,
\]
m\((z\tau) \) belongs to the Korányi region \(D_\alpha(\tau) \) whenever \(\alpha > k \). Indeed, it can be shown by direct calculations that the function \(m \) satisfies the equality
\[
\frac{1 - \langle m(z\tau), \tau \rangle}{1 - \|m(z\tau)\|_3^2} = L \frac{1 - |z|}{1 - |z|}^2, \quad z \in \Delta,
\]
where
\[
L := \frac{d}{dz} \frac{m(z\tau)}{|m(z\tau)|} \bigg|_{z=1} = \frac{1 - \langle y, \tau \rangle}{1 - \langle U_y \tau, y \rangle} = \frac{1 - |y\tau|}{1 - \|y\|_2^2} > 0.
\]
Consequently, we have for \(z \in \Gamma_k \),
\[
\left| \begin{array}{c}
1 - \langle m(z\tau), \tau \rangle \\
1 - \|m(z\tau)\|_3^2
\end{array} \right| = L \left| \begin{array}{c}
1 - |z| \\
1 - |z|_2^2
\end{array} \right| \leq L k \left| \begin{array}{c}
1 - |z| \\
1 - \langle m(z\tau), \tau \rangle
\end{array} \right|.
\]
Since \(\lim_{z \to 1} \frac{1 - \langle m(z\tau), \tau \rangle}{1 - |z|} = L \), it follows that if \(z \in \Gamma_k \) is close enough to 1, then \(m(z\tau) \) is in \(D_\alpha(\tau) \) \((\alpha > k) \). Hence, by hypothesis 8 of the theorem,
\[
\angle lim_{z \to 1} \frac{g(z)}{|z - 1|^3} = 0.
\]
Therefore equality 8 implies that \(\angle lim_{z \to 1} \frac{g(z)}{|z - 1|^3} = 0 \), and by Proposition 2, \(g \equiv 0 \) on \(\Delta \). So, by 7,
\[
\langle f(m(z\tau)), [M_y'(m(z\tau))]^* U_y \tau \rangle = 0 \quad \text{for all} \quad z \in \Delta.
\]
In particular, this equality holds for \(z = 0 \); i.e.,
\[
\langle f(y), [M_y'(y)]^* U_y \tau \rangle = 0 \quad \text{for each} \quad y \in \mathbb{B}.
\]
(9)
By direct calculations, one obtains that
\[M'(x)h = \frac{1}{(1-\langle x, y \rangle)^2} \left[-(1-\langle x, y \rangle)(P_y + sQ_y)h + \langle h, y \rangle(y - P_y x - sQ_y x) \right]. \]
Hence,
\[M'(y)h = -\frac{1}{1-\|y\|^2}(P_y + sQ_y)h, \]
and equality (9) is equivalent to
\[\langle f(y), (P_y + sQ_y)U_y \rangle = 0. \]
Substituting
\[U_y = \frac{y - P_y y - sQ_y y}{1-\langle \tau, y \rangle} \]
in this equality, we obtain
\[\langle f(y), y - \tau + \|y\|^2 \tau - \langle \tau, y \rangle y \rangle = 0 \quad \text{for all} \quad y \in B. \]
Let \(y = y_1 \tau + \tilde{y} \), where \(y_1 = \langle y, \tau \rangle \) and \(\langle \tilde{y}, \tau \rangle = 0 \).
Similarly, \(f(y) = f_1(y) \tau + \tilde{f}(y) \) with \(f_1(y) = \langle f(y), \tau \rangle \) and \(\tilde{f}(y), \tau \rangle = 0 \) for all \(y \in B \).
Using this notation, we have
\[\langle f_1(y) \tau, y_1 \tau - \tau + \|y\|^2 \tau - |y_1|^2 \tau \rangle = -(\tilde{f}(y), \tilde{y} - \overline{y}_1 \tilde{y}) \]
and
\[(1 - \overline{y}_1 - \|y\|^2) f_1(y) = (1 - y_1) \langle \tilde{f}(y), \tilde{y} \rangle. \]
Differentiating this equality with respect to \(\overline{y}_1 \), we conclude that it can hold only if \(f_1(y) = 0 \) and
\[\langle \tilde{f}(y), \tilde{y} \rangle = 0 \quad \text{for all} \quad y \in B. \]

Now let \(\sigma \) be an arbitrary unit vector orthogonal to \(\tau \), i.e., \(\langle \sigma, \tau \rangle = 0 \). Suppose that \(\tilde{y} = y_2 \sigma + u \), where \(y_2 = \langle \tilde{y}, \sigma \rangle \) and \(\langle u, \sigma \rangle = 0 \).
Similarly, \(\tilde{f}(y) = f_2(y) \sigma + v(y) \) with \(f_2(y) = \langle \tilde{f}(y), \sigma \rangle \) and \(\langle v(y), \sigma \rangle = 0 \) for all \(y \in B \). Then by (10),
\[f_2(y) \overline{y}_2 = -(v(y), u). \]
Differentiating this equality with respect to \(\overline{y}_2 \), we obtain \(f_2(y) = 0 \). Hence, \(f \equiv 0 \) on \(B \).

Following L. A. Harris \([13]\), we define the numerical range of each \(h \in \text{Hol}(B, H) \) which has a norm continuous extension to \(B \) by
\[V(h) := \{ \langle h(x), x \rangle : \|x\| = 1 \}. \]
For an arbitrary holomorphic mapping \(h \in \text{Hol}(B, H) \) and for each \(s \in (0, 1) \), we define the mapping \(h_s : sB \to H \) by
\[h_s := h(sx), \quad \|x\| < \frac{1}{s}, \]
and set
\[L(h) := \lim_{s \to 1^-} \sup \text{Re}(V(h_s)). \]
It is known (Theorem 1 in [14]) that the mapping \(I - h \) is a generator if and only if \(L(h) \leq 1 \). So the following corollary is an immediate consequence of our theorem.

Corollary. Let \(h \in \text{Hol}(\mathbb{B}, H) \) with \(L(h) \leq 1 \). If for some \(\tau \in \partial \mathbb{B} \), the \(K \)-limit

\[
K \cdot \lim_{x \to \tau} \frac{h(x) - x}{\|x - \tau\|^3} = 0,
\]

then \(h \equiv I \) on \(\mathbb{B} \).

Since obviously \(L(h) \leq 1 \) for all self-mappings of \(\mathbb{B} \), this corollary properly contains Proposition 3.

References

Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
E-mail address: mark.elin@gmail.com

Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
E-mail address: marlev@list.ru

Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
E-mail address: sreich@tx.technion.ac.il

Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
E-mail address: davs27@netvision.net.il