Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A rigidity theorem for holomorphic generators on the Hilbert ball


Authors: Mark Elin, Marina Levenshtein, Simeon Reich and David Shoikhet
Journal: Proc. Amer. Math. Soc. 136 (2008), 4313-4320
MSC (2000): Primary 30C45, 30D05, 46T25, 47H20
DOI: https://doi.org/10.1090/S0002-9939-08-09417-3
Published electronically: June 25, 2008
MathSciNet review: 2431045
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a rigidity property of holomorphic generators on the open unit ball $ \mathbb{B}$ of a Hilbert space $ H$. Namely, if $ f\in\operatorname{Hol}(\mathbb{B},H)$ is the generator of a one-parameter continuous semigroup $ \left\{F_t\right\}_{t\geq 0}$ on $ \mathbb{B}$ such that for some boundary point $ \tau\in\partial\mathbb{B}$, the admissible limit $ K$- $ \lim\limits_{z\rightarrow\tau}\frac{f(x)}{\Vert x-\tau\Vert^{3}}=0$, then $ f$ vanishes identically on $ \mathbb{B}$.


References [Enhancements On Off] (What's this?)

  • 1. D. Aharonov, S. Reich and D. Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces, Math. Proceedings of the Royal Irish Academy 99A (1999), 93-104. MR 1883068 (2002i:46038)
  • 2. H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249-256. MR 0352531 (50:5018)
  • 3. L. Baracco, D. Zaitsev and G. Zampieri, A Burns-Krantz type theorem for domains with corners, Math. Ann. 336 (2006), 491-504. MR 2249756 (2007f:32021)
  • 4. E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115. MR 0480965 (58:1112)
  • 5. F. Bracci, R. Tauraso and F. Vlacci, Identity principles for commuting holomorphic self-maps of the unit disc, J. Math. Anal. Appl. 270 (2002), 451-473. MR 1916591 (2003f:30030)
  • 6. D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661-676. MR 1242454 (94j:32016)
  • 7. M. Elin, M. Levenshtein, S. Reich, and D. Shoikhet, Rigidity results for holomorphic mappings on the unit disk, in Complex and Harmonic Analysis, DEStech Publications, Lancaster, PA, 2007, 93-109.
  • 8. M. Elin, M. Levenshtein, D. Shoikhet, and R. Tauraso, Rigidity of holomorphic generators and one-parameter semigroups, Dynam. Syst. Appl. 16 (2007), 251-266. MR 2330793
  • 9. M. Elin, S. Reich and D. Shoikhet, Complex dynamical systems and the geometry of domains in Banach spaces, Dissertations Math. 427 (2004). MR 2071666 (2005g:47118)
  • 10. M. Elin and D. Shoikhet, Dynamic extension of the Julia-Wolff-Carathéodory theorem, Dynam. Syst. Appl. 10 (2001), 421-438. MR 1858192 (2002j:30020)
  • 11. G. Gentili and S. Migliorini, A boundary rigidity problem for holomorphic mappings, Gen. Math. 5 (1997), 161-174. MR 1723606 (2000j:32027)
  • 12. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. MR 744194 (86d:58012)
  • 13. L. A. Harris, The numerical range of holomorphic functions in Banach spaces, Amer. J. Math. 93 (1971), 1005-1019. MR 0301505 (46:663)
  • 14. L. A. Harris, S. Reich and D. Shoikhet, Dissipative holomorphic functions, Bloch radii, and the Schwarz lemma, J. Analyse Math. 82 (2000), 221-232. MR 1799664 (2001k:46074)
  • 15. X. J. Huang, A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains, Canad. J. Math. 47 (1995), 405-420. MR 1335086 (96f:32041)
  • 16. E. Kopecká and S. Reich, Hyperbolic monotonicity in the Hilbert ball, Fixed Point Theory Appl. 2006, Article ID 78104, 1-15. MR 2210916 (2007c:47063)
  • 17. M. Levenshtein, S. Reich and D. Shoikhet, An application of the resolvent method to rigidity theory for holomorphic mappings, J. Nonlinear Convex Anal. 8 (2007), 99-103. MR 2314669
  • 18. S. Reich and D. Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric, Atti. Accad. Naz. Lincei 8 (1997), 231-250. MR 1631605 (99g:47155)
  • 19. S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005. MR 2022955 (2006g:47105)
  • 20. W. Rudin, Function Theory in the Unit Ball of $ \mathbb{C}^{n}$, Springer, Berlin, 1980. MR 601594 (82i:32002)
  • 21. D. Shoikhet, Semigroups in Geometrical Function Theory, Kluwer, Dordrecht, 2001. MR 1849612 (2002g:30012)
  • 22. R. Tauraso and F. Vlacci, Rigidity at the boundary for holomorphic self-maps of the unit disk, Complex Variables Theory Appl. 45 (2001), 151-165. MR 1909431 (2003e:30039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C45, 30D05, 46T25, 47H20

Retrieve articles in all journals with MSC (2000): 30C45, 30D05, 46T25, 47H20


Additional Information

Mark Elin
Affiliation: Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
Email: mark.elin@gmail.com

Marina Levenshtein
Affiliation: Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
Email: marlev@list.ru

Simeon Reich
Affiliation: Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
Email: sreich@tx.technion.ac.il

David Shoikhet
Affiliation: Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
Email: davs27@netvision.net.il

DOI: https://doi.org/10.1090/S0002-9939-08-09417-3
Keywords: Angular limit, Hilbert ball, holomorphic generator, $K$-limit, one-parameter continuous semigroup, rigidity
Received by editor(s): July 30, 2007
Received by editor(s) in revised form: October 20, 2007
Published electronically: June 25, 2008
Additional Notes: The third author was partially supported by the Fund for the Promotion of Research at the Technion and by the Technion President’s Research Fund.
All the authors thank the referee for several helpful comments and suggestions.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society