Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A counterexample to the maximality of toric varieties


Author: Valerie Hower
Journal: Proc. Amer. Math. Soc. 136 (2008), 4139-4142
MSC (2000): Primary 14M25, 14F45; Secondary 05B35
DOI: https://doi.org/10.1090/S0002-9939-08-09431-8
Published electronically: June 17, 2008
MathSciNet review: 2431025
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a counterexample to the conjecture of Bihan, Franz, McCrory, and van Hamel concerning the maximality of toric varieties. There exists a six dimensional projective toric variety $ X$ with the sum of the $ \mathbb{Z}_2$ Betti numbers of $ X(\mathbb{R})$ strictly less than the sum of the $ \mathbb{Z}_2$ Betti numbers of $ X(\mathbb{C})$.


References [Enhancements On Off] (What's this?)

  • [Bat] V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535. MR 1269718 (95c:14046)
  • [Bih] F. Bihan, M. Franz, C. McCrory, J. van Hamel, Is every toric variety an M-variety?, Manuscripta Math. 120 (2006), 217-232. MR 2234250
  • [Deg] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques Surfaces, Springer-Verlag, New York, 2000. MR 1795406 (2001k:14100)
  • [Fra] M. Franz, Maple package $ \mathtt{torhom},$ version 1.3.0, September 13, 2004, Available at http://www-fourier.ujf-grenoble.fr/$ \sim$franz/maple/torhom.html
  • [Ful] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NJ, 1993. MR 1234037 (94g:14028)
  • [Gel] I.M. Gelfand, M. Goresky, R.D. MacPherson, V.V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. Math. 63 (1987), 301-316. MR 877789 (88f:14045)
  • [How] V. Hower, Hodge spaces of real toric varieties, Collect. Math. 59 (2008), 215-237.
  • [Oxl] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992. MR 1207587 (94d:05033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14M25, 14F45, 05B35

Retrieve articles in all journals with MSC (2000): 14M25, 14F45, 05B35


Additional Information

Valerie Hower
Affiliation: Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
Email: vhower@math.gatech.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09431-8
Received by editor(s): May 4, 2007
Received by editor(s) in revised form: November 1, 2007
Published electronically: June 17, 2008
Communicated by: Ted Chinburg
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society