A short proof of the Mock Theta Conjectures using Maass forms
Author:
Amanda Folsom
Journal:
Proc. Amer. Math. Soc. 136 (2008), 41434149
MSC (2000):
Primary 11F37
Published electronically:
June 17, 2008
MathSciNet review:
2431026
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A celebrated work of D. Hickerson gives a proof of the Mock Theta Conjectures using Hecketype identities discovered by G. Andrews. Here, we respond to a remark by K. Bringmann, K. Ono and R. Rhoades and provide a short proof of the Mock Theta Conjectures by realizing each side of the identities as the holomorphic projection of a harmonic weak Maass form.
 1.
George
E. Andrews, The fifth and seventh order mock theta
functions, Trans. Amer. Math. Soc.
293 (1986), no. 1,
113–134. MR
814916 (87f:33011), http://dx.doi.org/10.1090/S00029947198608149162
 2.
George
E. Andrews and F.
G. Garvan, Ramanujan’s “lost” notebook. VI. The
mock theta conjectures, Adv. in Math. 73 (1989),
no. 2, 242–255. MR 987276
(90d:11115), http://dx.doi.org/10.1016/00018708(89)900704
 3.
A.
O. L. Atkin and P.
SwinnertonDyer, Some properties of partitions, Proc. London
Math. Soc. (3) 4 (1954), 84–106. MR 0060535
(15,685d)
 4.
K. Bringmann and K. Ono, Dyson's ranks and Maass forms, Annals of Mathematics, accepted for publication (2007).
 5.
Kathrin
Bringmann and Ken
Ono, The 𝑓(𝑞) mock theta function conjecture and
partition ranks, Invent. Math. 165 (2006),
no. 2, 243–266. MR 2231957
(2007e:11127), http://dx.doi.org/10.1007/s0022200504935
 6.
K. Bringmann, K. Ono, and R. Rhoades, Eulerian series as modular forms, Journal of the Amer. Math. Soc., accepted for publication.
 7.
K. Bringmann, Asymptotics for rank partition functions, Trans. Amer. Math. Soc., accepted for publication.
 8.
Jan
Hendrik Bruinier and Jens
Funke, On two geometric theta lifts, Duke Math. J.
125 (2004), no. 1, 45–90. MR 2097357
(2005m:11089), http://dx.doi.org/10.1215/S0012709404125138
 9.
F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 1015.
 10.
Dean
Hickerson, A proof of the mock theta conjectures, Invent.
Math. 94 (1988), no. 3, 639–660. MR 969247
(90f:11028a), http://dx.doi.org/10.1007/BF01394279
 11.
Neal
Koblitz, Introduction to elliptic curves and modular forms,
2nd ed., Graduate Texts in Mathematics, vol. 97, SpringerVerlag, New
York, 1993. MR
1216136 (94a:11078)
 12.
Ken
Ono, The web of modularity: arithmetic of the coefficients of
modular forms and 𝑞series, CBMS Regional Conference Series in
Mathematics, vol. 102, Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 2004. MR 2020489
(2005c:11053)
 13.
Srinivasa
Ramanujan, Collected papers of Srinivasa Ramanujan, AMS
Chelsea Publishing, Providence, RI, 2000. Edited by G. H. Hardy, P. V.
Seshu Aiyar and B. M. Wilson; Third printing of the 1927 original; With a
new preface and commentary by Bruce C. Berndt. MR 2280843
(2008b:11002)
 14.
Goro
Shimura, On modular forms of half integral weight, Ann. of
Math. (2) 97 (1973), 440–481. MR 0332663
(48 #10989)
 15.
G.
N. Watson, The final problem: an account of the mock theta
functions, Ramanujan: essays and surveys, Hist. Math., vol. 22,
Amer. Math. Soc., Providence, RI, 2001, pp. 325–347. MR
1862757
 16.
G.N. Watson, The mock theta functions (2), Proc. London Math. Soc. (2) 42 (1937), 274304.
 17.
S. P. Zwegers, Mock theta functions, Ph.D. Thesis, Universiteit Utrecht (2002).
 1.
 G. Andrews, The fifth and seventh order mock theta functions, Trans. Am. Math. Soc. 293 (1986), 113134. MR 814916 (87f:33011)
 2.
 G. Andrews and F. Garvan, Ramanujan's ``Lost'' Notebook IV: The Mock Theta Conjectures, Adv. Math. 73 (1989), 242255. MR 987276 (90d:11115)
 3.
 A.O.L. Atkin and P. SwinnertonDyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84106. MR 0060535 (15:685d)
 4.
 K. Bringmann and K. Ono, Dyson's ranks and Maass forms, Annals of Mathematics, accepted for publication (2007).
 5.
 K. Bringmann and K. Ono, The mock theta function conjecture and partition ranks, Inventiones Math. 165 (2006), 243266. MR 2231957 (2007e:11127)
 6.
 K. Bringmann, K. Ono, and R. Rhoades, Eulerian series as modular forms, Journal of the Amer. Math. Soc., accepted for publication.
 7.
 K. Bringmann, Asymptotics for rank partition functions, Trans. Amer. Math. Soc., accepted for publication.
 8.
 J. H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 4590. MR 2097357 (2005m:11089)
 9.
 F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 1015.
 10.
 D. Hickerson, A proof of the Mock Theta Conjectures, Inventiones Math. (3) 94 (1988), 639660. MR 969247 (90f:11028a)
 11.
 N. Koblitz, Introduction to Elliptic Curves and Modular Forms, GTM No. 97, SpringerVerlag (1984, 1993). MR 1216136 (94a:11078)
 12.
 K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and series, Conference Board of the Mathematical Sciences 102, Amer. Math. Soc., Providence, RI (2004). MR 2020489 (2005c:11053)
 13.
 S. Ramanujan, Collected Papers, Cambridge Univ. Press, London/NY, 1927 (reprinted by Chelsea, NY). MR 2280843 (2008b:11002)
 14.
 G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973), 440481. MR 0332663 (48:10989)
 15.
 G. N. Watson, The final problem: An account of the mock theta functions, J. London Math. Soc. 11 (1936), 5580. MR 1862757
 16.
 G.N. Watson, The mock theta functions (2), Proc. London Math. Soc. (2) 42 (1937), 274304.
 17.
 S. P. Zwegers, Mock theta functions, Ph.D. Thesis, Universiteit Utrecht (2002).
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11F37
Retrieve articles in all journals
with MSC (2000):
11F37
Additional Information
Amanda Folsom
Affiliation:
Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53706
Email:
folsom@math.wisc.edu
DOI:
http://dx.doi.org/10.1090/S0002993908094343
PII:
S 00029939(08)094343
Received by editor(s):
November 5, 2007
Published electronically:
June 17, 2008
Additional Notes:
The author is grateful for a National Science Foundation Postdoctoral Fellowship and wishes to thank Ken Ono for suggesting this project. The author also thanks the referee for a very detailed and thoughtful report, including useful suggestions that have helped ease the exposition of this paper.
Communicated by:
Ken Ono
Article copyright:
© Copyright 2008
American Mathematical Society
