Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Markov dilation for self-adjoint Schur multipliers


Author: Éric Ricard
Journal: Proc. Amer. Math. Soc. 136 (2008), 4365-4372
MSC (2000): Primary 46L53
DOI: https://doi.org/10.1090/S0002-9939-08-09452-5
Published electronically: June 27, 2008
MathSciNet review: 2431051
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a formula for Markov dilation in the sense of Anantha- raman-Delaroche for real positive Schur multipliers on $ \mathbb{B}(H)$.


References [Enhancements On Off] (What's this?)

  • [1] Claire Anantharaman-Delaroche, On ergodic theorems for free group actions on noncommutative spaces, Probab. Theory Related Fields 135(4) (2006), 520-546. MR 2240699 (2007m:46104)
  • [2] Marek Bo$ \dot{{z}}$ejko, Burkhard Kümmerer, and Roland Speicher, $ q$-Gaussian processes: Non-commutative and classical aspects, Comm. Math. Phys. 185(1) (1997), 129-154. MR 1463036 (98h:81053)
  • [3] Fumio Hiai, $ q$-deformed Araki-Woods algebras, Operator algebras and mathematical physics (Constanţa, 2001), Theta, Bucharest, 2003, pp. 169-202. MR 2018229 (2004j:46086)
  • [4] M. Junge, Operator spaces and Araki-Woods factors: A quantum probabilistic approach, IMRP Int. Math. Res. Pap. 87 (2006), Art. ID 76978. MR 2268491
  • [5] Marius Junge, Christian Le Merdy, and Quanhua Xu, $ H\sp{\infty }$ functional calculus and square functions on noncommutative $ L\sp{p}$-spaces, Astérisque, vol. 305, 2006. MR 2265255
  • [6] Marius Junge and Quanhua Xu, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20(2) (2007), 385-439. MR 2276775 (2007k:46109)
  • [7] Gilles Pisier, Similarity problems and completely bounded maps, Lecture Notes in Math., vol. 1618, Springer-Verlag, Berlin, 2001. MR 1818047 (2001m:47002)
  • [8] Yves Raynaud, On ultrapowers of non commutative $ L\sb p$ spaces, J. Operator Theory 48(1) (2002), 41-68. MR 1926043 (2003i:46069)
  • [9] Éric Ricard and Quanhua Xu, Khintchine type inequalities for reduced free products and applications, J. Reine Angew. Math. 599 (2006), 27-59. MR 2279097
  • [10] Gian-Carlo Rota, An ``Alternierende Verfahren'' for general positive operators, Bull. Amer. Math. Soc. 68 (1962), 95-102. MR 0133847 (24:A3671)
  • [11] Jean-Luc Sauvageot, Markov quantum semigroups admit covariant Markov $ C\sp{\ast }$-dilations, Comm. Math. Phys. 106(1) (1986), 91-103. MR 853979 (88a:46077)
  • [12] Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, NJ, 1970. MR 0252961 (40:6176)
  • [13] M. Takesaki, Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2003. MR 1943006 (2004g:46079)
  • [14] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, volume 1 of CRM Monograph Series, American Mathematical Society, Providence, RI, 1992. MR 1217253 (94c:46133)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L53

Retrieve articles in all journals with MSC (2000): 46L53


Additional Information

Éric Ricard
Affiliation: Laboratoire de Mathématiques, Université de Franche-Comté, 25030 Besançon, cedex, France
Email: eric.ricard@univ-fcomte.fr

DOI: https://doi.org/10.1090/S0002-9939-08-09452-5
Keywords: Completely positive maps, Schur multipliers
Received by editor(s): July 23, 2007
Received by editor(s) in revised form: November 12, 2007
Published electronically: June 27, 2008
Additional Notes: The author is supported by research program ANR-06-BLAN-0015
Communicated by: Marius Junge
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society