Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Dahlberg's bilinear estimate for solutions of divergence form complex elliptic equations

Author: Steve Hofmann
Journal: Proc. Amer. Math. Soc. 136 (2008), 4223-4233
MSC (2000): Primary 42B20, 42B25, 35J25
Published electronically: July 25, 2008
MathSciNet review: 2431035
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider divergence form elliptic operators $ L=-\operatorname{div} A(x)\nabla$, defined in $ \mathbb{R}^{n+1}=\{(x,t)\in\mathbb{R}^{n}\times\mathbb{R}\},\, n \geq 2$, where the $ L^{\infty}$ coefficient matrix $ A$ is $ (n+1)\times(n+1)$, uniformly elliptic, complex and $ t$-independent. Using recently obtained results concerning the boundedness and invertibility of layer potentials associated to such operators, we show that if $ Lu=0$ in $ \mathbb{R}^{n+1}_+$, then for any vector-valued $ {\bf v} \in W^{1,2}_{loc},$ we have the bilinear estimate

$\displaystyle \left\vert\iint_{\mathbb{R}^{n+1}_+} \nabla u \cdot \overline{{\... ...t \nabla {\bf v}\Vert\vert + \Vert N_*{\bf v}\Vert _{L^2(\mathbb{R}^n)}\right),$

where $ \Vert\vert F\Vert\vert \equiv \left(\iint_{\mathbb{R}^{n+1}_+} \vert F(x,t)\vert^2 t^{-1} dx dt\right)^{1/2},$ and where $ N_*$ is the usual non-tangential maximal operator. The result is new even in the case of real symmetric coefficients and generalizes an analogous result of Dahlberg for harmonic functions on Lipschitz graph domains. We also identify the domain of the generator of the Poisson semigroup for the equation $ Lu=0$ in $ \mathbb{R}^{n+1}_+.$

References [Enhancements On Off] (What's this?)

  • 1. M. Alfonseca, P. Auscher, A. Axelsson, S. Hofmann and S. Kim, Analyticity of layer potentials and $ L^{2}$ solvability of boundary value problems for divergence form elliptic equations with complex $ L^{\infty}$ coefficients, preprint $ _{\widetilde{}}$ hofmann/.
  • 2. P. Auscher, Regularity theorems and heat kernel for elliptic operators. J. London Math. Soc. (2) 54 (1996), no. 2, 284-296. MR 1405056 (97f:35034)
  • 3. P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on $ \mathbb{R}^n$, Annals of Math. (2) 156 (2002), 633-654. MR 1933726 (2004c:47096c)
  • 4. P. Auscher, S. Hofmann, J.L. Lewis, P. Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato's square-root operators, Acta Math. 187 (2001), no. 2, 161-190. MR 1879847 (2004c:47096a)
  • 5. R. Coifman, A. M$ ^{\rm c}$Intosh, and Y. Meyer.
    L'intégrale de Cauchy définit un opérateur borné sur $ L^2$ pour les courbes lipschitziennes.
    Ann. Math. (2) 116 (1982), 361-387. MR 672839 (84m:42027)
  • 6. B. Dahlberg, Poisson semigroups and singular integrals, Proc. Amer. Math. Soc. 97 (1986), 41-48. MR 831384 (87g:42035)
  • 7. E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari (Italian). Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43. MR 0093649 (20:172)
  • 8. C. Fefferman and E. M. Stein, $ H\sp{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. MR 0447953 (56:6263)
  • 9. S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Mathematica 124 (2007), 139-172. MR 2341783
  • 10. S. Hofmann, M. Lacey and A. M$ ^{\rm c}$Intosh.
    The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds.
    Annals of Math. (2) 156 (2002), pp. 623-631. MR 1933725 (2004c:47096b)
  • 11. S. Hofmann and A. M$ ^{\rm c}$Intosh, The solution of the Kato problem in two dimensions, Proceedings of the Conference on Harmonic Analysis and PDE held in El Escorial, Spain, in July 2000, Publ. Mat. Vol. extra, 2002, pp. 143-160. MR 1964818 (2004c:47097)
  • 12. C. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1994. MR 1282720 (96a:35040)
  • 13. C. Kenig and J. Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45 (2001), no. 1, 199-217. MR 1829584 (2002e:35017)
  • 14. D. Mitrea, M. Mitrea and M. Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds. Mem. Amer. Math. Soc. 150 (2001), no. 713. MR 1809655 (2002g:58026)
  • 15. J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. MR 0100158 (20:6592)
  • 16. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59 (1984), no. 3, 572-611. MR 769382 (86e:35038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B20, 42B25, 35J25

Retrieve articles in all journals with MSC (2000): 42B20, 42B25, 35J25

Additional Information

Steve Hofmann
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Received by editor(s): April 27, 2007
Published electronically: July 25, 2008
Additional Notes: The author was supported by the National Science Foundation
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society