Dahlberg's bilinear estimate for solutions of divergence form complex elliptic equations

Author:
Steve Hofmann

Journal:
Proc. Amer. Math. Soc. **136** (2008), 4223-4233

MSC (2000):
Primary 42B20, 42B25, 35J25

DOI:
https://doi.org/10.1090/S0002-9939-08-09500-2

Published electronically:
July 25, 2008

MathSciNet review:
2431035

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider divergence form elliptic operators , defined in , where the coefficient matrix is , uniformly elliptic, complex and -independent. Using recently obtained results concerning the boundedness and invertibility of layer potentials associated to such operators, we show that if in , then for any vector-valued we have the bilinear estimate

**1.**M. Alfonseca, P. Auscher, A. Axelsson, S. Hofmann and S. Kim, Analyticity of layer potentials and solvability of boundary value problems for divergence form elliptic equations with complex coefficients, preprint`http://www.math.missouri.edu/ hofmann/.`**2.**P. Auscher, Regularity theorems and heat kernel for elliptic operators.*J. London Math. Soc.*(2)**54**(1996), no. 2, 284-296. MR**1405056 (97f:35034)****3.**P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on ,*Annals of Math.*(2)**156**(2002), 633-654. MR**1933726 (2004c:47096c)****4.**P. Auscher, S. Hofmann, J.L. Lewis, P. Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato's square-root operators,*Acta Math.***187**(2001), no. 2, 161-190. MR**1879847 (2004c:47096a)****5.**R. Coifman, A. MIntosh, and Y. Meyer.

L'intégrale de Cauchy définit un opérateur borné sur pour les courbes lipschitziennes.*Ann. Math.*(2)**116**(1982), 361-387. MR**672839 (84m:42027)****6.**B. Dahlberg, Poisson semigroups and singular integrals, Proc. Amer. Math. Soc.**97**(1986), 41-48. MR**831384 (87g:42035)****7.**E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari (Italian).*Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat.*(3)**3**(1957), 25-43. MR**0093649 (20:172)****8.**C. Fefferman and E. M. Stein, spaces of several variables,*Acta Math.***129**(1972), no. 3-4, 137-193. MR**0447953 (56:6263)****9.**S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Mathematica**124**(2007), 139-172. MR**2341783****10.**S. Hofmann, M. Lacey and A. MIntosh.

The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds.*Annals of Math.*(2)**156**(2002), pp. 623-631. MR**1933725 (2004c:47096b)****11.**S. Hofmann and A. MIntosh, The solution of the Kato problem in two dimensions, Proceedings of the Conference on Harmonic Analysis and PDE held in El Escorial, Spain, in July 2000,*Publ. Mat.*Vol. extra, 2002, pp. 143-160. MR**1964818 (2004c:47097)****12.**C. Kenig,*Harmonic analysis techniques for second order elliptic boundary value problems*, CBMS Regional Conference Series in Mathematics, 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1994. MR**1282720 (96a:35040)****13.**C. Kenig and J. Pipher, The Dirichlet problem for elliptic equations with drift terms,*Publ. Mat.***45**(2001), no. 1, 199-217. MR**1829584 (2002e:35017)****14.**D. Mitrea, M. Mitrea and M. Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds.*Mem. Amer. Math. Soc.***150**(2001), no. 713. MR**1809655 (2002g:58026)****15.**J. Nash, Continuity of solutions of parabolic and elliptic equations,*Amer. J. Math.***80**(1958), 931-954. MR**0100158 (20:6592)****16.**G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains.*J. Funct. Anal.***59**(1984), no. 3, 572-611. MR**769382 (86e:35038)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B20,
42B25,
35J25

Retrieve articles in all journals with MSC (2000): 42B20, 42B25, 35J25

Additional Information

**Steve Hofmann**

Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Email:
hofmann@math.missouri.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09500-2

Received by editor(s):
April 27, 2007

Published electronically:
July 25, 2008

Additional Notes:
The author was supported by the National Science Foundation

Communicated by:
Michael T. Lacey

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.