On boundary blow-up problems for the complex Monge-Ampère equation

Author:
Szymon Plis

Journal:
Proc. Amer. Math. Soc. **136** (2008), 4355-4364

MSC (2000):
Primary 32W20, 35B65

DOI:
https://doi.org/10.1090/S0002-9939-08-09513-0

Published electronically:
July 8, 2008

MathSciNet review:
2431050

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the regularity for some complex Monge-Ampère equations with boundary data equal to .

**[B1]**Z. Błocki,*On the regularity of the complex Monge-Ampère operator*, Complex geometric analysis in Pohang (1997), 181-189, Contemp. Math., 222, Amer. Math. Soc., Providence, RI, 1999. MR**1653050 (99m:32018)****[B2]**Z. Błocki,*Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds*, Math. Z. 244 (2003), no. 1, 153-161. MR**1981880 (2004b:32065)****[C-K-N-S]**L. Caffarelli, J. J. Kohn, L. Nirenberg, J. Spruck,*The Dirichlet problem for non-linear second order elliptic equations, II: Complex Monge-Ampère, and uniformly elliptic equations*, Comm. Pure Appl. Math. 38 (1985), 209-252. MR**780073 (87f:35097)****[C-Y]**S.-Y. Cheng, S.-Y. Yau,*On the existence of a complete Kähler metric on non-compact complex manifolds and regularity of Fefferman's equation*, Comm. Pure Appl. Math. 33 (1980), 507-544. MR**575736 (82f:53074)****[G-P]**F. Gladiali, G. Porru,*Estimates for explosive solutions to p-Laplace equations*, Progress in Partial Differential Equations (Pont-à-Mousson), Vol. 1, Pitman Res. Notes Math. Series, 383, Longman, Harlow (1998), 117-127. MR**1628068 (2000h:35047)****[I]**B. Ivarsson,*Regularity and uniqueness of solutions to boundary blow-up problems for the complex Monge-Ampère operator*, Bull. Polish Acad. Sci. Math. 54 (2006), 13-25. MR**2270791 (2007g:32028)****[I-M]**B. Ivarsson, J. Matero,*The blow-up rate of solutions to boundary blow-up problems for the complex Monge-Ampère operator*, Manuscripta Math. 120 (2006), no. 3, 325-345. MR**2243567 (2007h:32058)****[L-M]**A. C. Lazer, P. J. McKenna,*On singular boundary value problems for the Monge-Ampère operator*, J. Math. Anal. Appl. 197 (1996), 341-362. MR**1372183 (97c:35064)****[M]**A. Mohammed,*On the existence of solutions to the Monge-Ampère equation with infinite boundary values*, Proc. Amer. Math. Soc. 138 no. 1 (2007), 141-149. MR**2280183**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
32W20,
35B65

Retrieve articles in all journals with MSC (2000): 32W20, 35B65

Additional Information

**Szymon Plis**

Affiliation:
Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

Email:
splis@pk.edu.pl

DOI:
https://doi.org/10.1090/S0002-9939-08-09513-0

Keywords:
Complex Monge-Amp\`ere equation,
blow up problem.

Received by editor(s):
November 6, 2007

Published electronically:
July 8, 2008

Additional Notes:
This research was partially supported by Polish grant MNiSW 3342/H03/2006/31

Communicated by:
Mei-Chi Shaw

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.