STRONGLY NON-DEGENERATE LIE ALGEBRAS

FRANCESC PERERA AND MERCEDES SILES MOLINA

(Communicated by Birge Huisgen-Zimmermann)

Abstract. Let $A$ be a semiprime 2- and 3-torsion free non-commutative associative algebra. We show that the Lie algebra $\mathcal{D}er(A)$ of (associative) derivations of $A$ is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of $A$. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra $A$ with involution and the Lie algebra $S\mathcal{D}er(A)$ of involution preserving derivations of $A$.

Introduction

This paper is concerned with the structure of the Lie algebra $\mathcal{D}er(A)$ of associative derivations of an associative algebra $A$, which we will also assume to be 2- and 3-torsion free. It was proved in [10, Theorem 4 and Theorem 2] that if $A$ is semiprime (respectively prime), then $\mathcal{D}er(A)$ is a semiprime (respectively prime) Lie algebra. We prove below that if $A$ is prime, this result can be strengthened to show that in fact $\mathcal{D}er(A)$ is strongly non-degenerate (see below for the precise definitions).

The key result in the paper is Theorem 2.1, which has a technical flavour. Let $L$ be a subalgebra of a Lie algebra $Q$. The quadratic annihilator of $L$ inside $Q$ is defined as the set $\{q \in Q \mid [q,[q,L]]=0\}$. Roughly speaking, Theorem 2.1 allows us to obtain non-zero elements in the quadratic annihilator of $L$ in itself from non-zero elements in the quadratic annihilator of $L$ in itself from non-zero elements in the quadratic annihilator of $L$ inside $Q$ whenever $Q$ is a weak quotient algebra of $L$, i.e., $[L,q] \neq 0$ for every non-zero $q \in Q$. If $L$ is strongly non-degenerate, then the quadratic annihilator of $L$ inside $Q$ coincides with the annihilator of $L$ in $Q$, and both are zero (Theorem 2.2 (ii)).

Another application of Theorem 2.1 leads to the proof of the fact that if a Lie algebra $L$ contains an essential ideal which is strongly non-degenerate, then the algebra $L$ is itself strongly non-degenerate (Proposition 2.3 (ii)). This fact was already proved by Zelmanov in [17] by making use of the Kostrikin radical, while our proof is based on elements.
According to the above, and in order to obtain the result announced in the abstract (Theorem 2.5), we need to produce an essential ideal inside Der(A) which is strongly non-degenerate. The natural candidate for this is the ideal Inn(A) of the so-called inner derivations of A, which can be identified with the quotient A/Z(A), known to be strongly non-degenerate under appropriate mild hypotheses. However, this ideal might fail to be essential, and this is somehow measured by the ideal I_Z of those derivations that map A into the center Z(A). Our result then asserts that Der(A)/I_Z is strongly non-degenerate. In the particular case that the center Z(A) of A does not contain associative ideals (e.g. if A is prime), one has I_Z = 0, and then we obtain that Der(A) is strongly non-degenerate.

Our arguments can subsequently be adjusted with some extra effort to the case of a ∗-semiprime algebra A and the Lie algebra SDer(A) of those (associative) derivations of A that commute with the involution, that is, those δ ∈ Der(A) such that δ(a∗) = (δ(a))∗ for every a ∈ A (Theorem 2.8).

1. Notation and preliminaries

Let Φ be a unital commutative ring. All algebras in this paper, associative or not, will be Φ-modules. Recall that a Lie algebra over Φ is a Φ-module L, together with a bilinear map [ , ] : L × L → L, denoted by (x, y) ↦→ [x, y] and called the bracket of x and y, such that the following axioms are satisfied:

(i) [x, x] = 0,
(ii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity),

for every x, y, z in L.

The standard example is obtained by considering a (not necessarily unital) associative algebra A with its usual module structure and bracket given by [x, y] = xy − yx. Sometimes the notation A− is used in order to emphasize the Lie structure of A.

Given an element x of a Lie algebra L, we may define a map ad x : L → L by ad x(y) = [x, y] (which is a derivation of the Lie algebra L). We shall denote by A(L) the associative subalgebra (possibly without identity) of End(L) generated by the elements ad x for x in L.

An element x in a Lie algebra L is an absolute zero divisor if (ad x)2 = 0. This is equivalent to saying that [x, [x, L]] = 0. The algebra L is said to be strongly non-degenerate (according to Kostrikin) if it does not contain non-zero absolute zero divisors.

Given a Lie algebra L, we say that L is semiprime if we have I2 ≠ 0 whenever I is a non-zero ideal. It is obvious from the definitions that strongly non-degenerate Lie algebras are semiprime, but the converse does not hold (see [15, Remark 1.1]).

Next, L is said to be prime if [I, J] ≠ 0 for any pair of non-zero ideals I, J of L. An ideal I of L is said to be essential if its intersection with any non-zero ideal is again a non-zero ideal.

For two subsets X, Y of a (Lie) algebra L we define the annihilator of Y in X as the set

\[ \text{Ann}_X(Y) := \{ x ∈ X \mid [x, Y] = 0 \}, \]

and the quadratic annihilator of Y in X to be the set

\[ \text{QAnn}_X(Y) := \{ x ∈ X \mid [x, [x, Y]] = 0 \}. \]
When \( X = L \), we write \( \text{Ann}(Y) \) or \( \text{Ann}_L(Y) \) (if no confusion can arise) and refer to it as the annihilator of \( Y \). If \( X = Y = L \), then \( \text{Ann}(L) \) is called the center of \( L \) and is usually denoted by \( Z(L) \). In the case that \( L = A^{-} \) for an associative algebra \( A \), \( Z(A^{-}) \) agrees with the associative center \( Z \) of \( A \). It is easy to check (by using the Jacobi identity) that \( \text{Ann}(X) \) is an ideal of \( L \) whenever \( X \) is an ideal of \( L \). Therefore, for \( A \) associative we can form the Lie algebra \( A^{-}/Z \). We will be primarily interested in this type of Lie algebra and in Lie algebras that arise from associative algebras with involution. If \( A \) is associative and has an involution \( * \), then the set of its skew elements

\[
K = K_A = \{ x \in A \mid x^* = -x \}
\]

is a subalgebra of \( A^{-} \). The center \( Z(K) \) of the Lie algebra \( K \) will be for brevity denoted by \( Z_K \), and we will be interested in the Lie algebra \( K/Z \).

The notion of the quadratic annihilator of an (arbitrary) algebra – defined in a similar way as we have done for Lie algebras – plays an important role; see, for example, Smirnov’s paper \([16]\). Let us remark here that the quadratic annihilator need not be closed under sums in the case of an associative product (for an example, see \([16]\)). The same phenomenon occurs in the Lie context, as is shown in the examples below.

**Examples 1.1.** (1) Let \( F \) be any field and let \( L = t(3, F) \) be the Lie algebra of upper triangular matrices (see e.g. \([8]\)). Then \( \text{QAnn}(L) = \{ a(e_{11} + e_{22} + e_{33}) + b e_{31} + c e_{23} \mid a, b, c \in F \} \cup \{ a(e_{11} + e_{22} + e_{33}) + b e_{12} + c e_{13} \mid a, b, c \in F \} \), where, as usual, \( e_{ij} \) denotes the matrix in \( M_3(F) \) whose entries are all zero except for the one in row \( i \) and column \( j \). So \( \text{QAnn}(L) \) is not closed under sums.

(2) Now, for \( L \) as in (1), consider the Lie algebra \( L : = L/Z \). Then

\[
\text{QAnn}(L) = \{ a e_{13} + b e_{23} \mid a, b \in F \} \cup \{ a e_{12} + b e_{13} \mid a, b \in F \},
\]

where \( L \) denotes the class of an element \( x \) in \( L \). Again we have that the quadratic annihilator of this algebra \( L \) is not closed under sums.

Let \( L \subseteq Q \) be Lie algebras. When \( 0 \neq [L, q] \subseteq L \) for every non-zero \( q \in Q \), we say that \( Q \) is a weak algebra of quotients of \( L \) (see \([15]\)). The notion of an algebra of quotients of an algebra (associative or not necessarily associative) has a long history and is an active research area, especially in recent years, following its development in the Lie and Jordan contexts. In the seminal paper \([15]\) the second author initiated the study of algebras of quotients of Lie algebras, by adapting some ideas from the associative and also Jordan \((12)\) contexts. She introduced the notion of a general (abstract) algebra of quotients of a Lie algebra, and also the notion of the maximal algebra of quotients \( Q_m(L) \) of a semiprime Lie algebra \( L \). Follow-up results can be found in \([14]\) \([4]\) \([2]\).

Let \( B \) be a subalgebra of an associative algebra \( A \). A linear map \( \delta : B \rightarrow A \) is called a derivation if \( \delta(x y) = \delta(x) y + x \delta(y) \) for all \( x, y \in B \). By a derivation of \( A \) we simply mean a derivation from \( A \) into \( A \). Let \( \text{Der}(A) \) denote the set of all derivations of \( A \). It is clear that \( \text{Der}(A) \) becomes a \( \Phi \)-module under natural operations and it also becomes a Lie algebra by putting \( [\delta, \mu] = \delta \mu - \mu \delta \) for every \( \delta, \mu \) in \( \text{Der}(A) \). Any element \( x \) of \( A \) determines a map \( \text{ad} x : A \rightarrow A \) defined by \( \text{ad} x(y) = [x, y] \), which is a derivation of \( A \). For every Lie ideal \( U \) of \( A \), the
restriction of the map $\text{ad} : A \to \text{Der}(A)$ to $U$, namely

$$
U \to \text{Der}(A)
$$

$$
y \mapsto \text{ad} y,
$$

defines a Lie algebra homomorphism with kernel $\text{Ann}_U(A)$, which allows us to identify $U/\text{Ann}_U(A)$ with the subalgebra $\text{ad} (U)$ of $\text{Der}(A)$. For any $y \in U$ and $\delta \in \text{Der}(A)$, $[\delta, \text{ad} y] = \text{ad} \delta(y)$; hence $\text{ad} (U)$ is an ideal of $\text{Der}(A)$ whenever $\delta(U) \subseteq U$ for every $\delta \in \text{Der}(A)$. The ideal $\text{ad} (A)$ of $\text{Der}(A)$ is usually denoted by $\text{Inn}(A)$ and its elements are called \textit{inner derivations} of $A$. Note that $A^{-}/Z \cong \text{Inn}(A)$.

Now let $A$ be an associative algebra with involution $\ast$. The set

$$
\text{SDer}(A) = \{ \delta \in \text{Der}(A) \mid \delta(x^*) = \delta(x)^* \text{ for all } x \in A \}
$$

is a Lie subalgebra of $\text{Der}(A)$. Denote by $\text{ad} (K)$ the set of Lie derivations $\text{ad} x : A \to A$ with $x$ in $K$.

In what follows we will assume that 2 and 3 are invertible elements in $\Phi$.

2. The results

By an \textit{extension of Lie algebras} $L \subseteq Q$ we will mean that $L$ is a (Lie) subalgebra of the Lie algebra $Q$. Let $L \subseteq Q$ be an extension of Lie algebras and let $A_Q(L)$ be the associative subalgebra of $A(Q)$ generated by $\{\text{ad} x : x \in L\}$.

For an extension $L \subseteq Q$ of Lie algebras, the condition $\text{Ann}_L(Q) = 0$ ensures that the map $L \to A(Q)$ given by $x \mapsto \text{ad} x$ is a monomorphism of Lie algebras. Examples of extensions where $\text{Ann}_L(Q) = 0$ are the dense ones (see [3] for the definition of a dense extension and [14] for examples).

\textbf{Theorem 2.1.} Let $L \subseteq Q$ be an extension of Lie algebras such that the map $L \to A(Q)$, $x \mapsto \text{ad} x$ is a monomorphism of Lie algebras. Let $a \in \text{QAnn}_Q(L)$. Then, for each $u \in L$ satisfying $x := [a, u] \in L$, we have that $z := [x, [x, v]]$ is in $\text{QAnn}_L(L)$ for every $v \in L$.

\textbf{Proof.} In order to ease the notation in our computations, we shall temporarily get rid of the prefix $\text{ad}$ and use capital letters $X$, $Y$, etc., instead of $\text{ad} x$, $\text{ad} y$, etc. Because of our assumption, we shall also identify an element $x$ of $L$ with its corresponding operator $X = \text{ad} x$ in $A(Q)$. An equation involving commutators on $L$ is then translated into the corresponding equation with capital letters and commutators in $A(Q)$.

Let $a$ be in $\text{QAnn}_Q(L)$. Then

$$
[a, [a, y]] = 0 \text{ for every } y \in L.
$$

This implies that $[A, [A, Y]] = 0$ for every $Y \in \text{ad} (L) \subseteq A(Q)$; hence

$$
A^2 Y + Y A^2 - 2AY A = 0 \text{ for every } Y \in \text{ad} (L).
$$

By (2.1) we have

$$
A^2 = 0 \text{ on } L,
$$

and by (2.2) and $\frac{1}{2} \in \Phi$,

$$
AY A = 0 \text{ on } L \text{ for every } Y \in \text{ad} (L).
$$

For $x = [a, u] \in L$, with $u \in L$, we have that

$$
X^2 = (AU - UA)^2 = AUAU - AU^2 A - UA^2 U + UAU A = -AU^2 A
$$
on \(L\), by using (2.3) and (2.4).

Note that
\[
X^3 = (\frac{2}{2.5}) (\frac{2}{2} A U^2) (\frac{2}{2} A U^2) = (\frac{2}{2} A U^2) (\frac{2}{2} A U^2) = 0 \quad \text{by} \quad (2.3)
\]
and (2.4). Thus:
\[
(2.6) \quad X^3 = 0 \quad \text{on} \quad L.
\]

We may now apply [11, Lemma 1.5.6] to obtain:
\[
(2.7) \quad X^2 Y = X^2 Y^2 X \quad \text{on} \quad L, \quad \text{for every} \quad Y \in \text{ad} (L),
\]
and
\[
(2.8) \quad (X Y^2)^2 = X^2 Y X^2 \quad \text{on} \quad L, \quad \text{for every} \quad Y \in \text{ad} (L).
\]

Now,
\[
X^2 Y^2 X^2 = (Y X^2)^2 \quad \text{by} \quad (2.8)
\]
\[
(2.9) \quad = Y X^2 Y X^2 \quad \text{by} \quad (2.7)
\]
\[
= Y (Y X^2) X \quad \text{by} \quad (2.7)
\]
\[
= 0 \quad \text{by} \quad (2.6).
\]

Taking \(z := [x, [x, v]]\), with \(v \in L\), we compute that, on \(L\),
\[
Z^2 = (X^2 V + V X^2 - 2 X V X) (X^2 V + V X^2 - 2 X V X)
\]
\[
= X^2 V X^2 V + V X^4 V - 2 X V X^3 V
\]
\[
+ X^2 V^2 X^2 + V X^2 V X^2 - 2 X V X V X^2
\]
\[
- 2 X^2 V X V X - 2 V X^3 V X + 4 V X^2 V X
\]
\[
= X^2 V X^2 V + V X^2 V X^2
\]
\[
- 2 X V (X V X^2) - 2 (X^2 V X) V X + 4 V X^2 V X \quad \text{by} \quad (2.9) \quad \text{with} \quad Y = V \quad \text{and} \quad (2.6)
\]
\[
= X^2 V X^2 V + V X^2 V X^2 \quad \text{by} \quad (2.7) \quad \text{twice with} \quad Y = V
\]
\[
= X^2 V X^2 V \quad \text{by} \quad (2.6) \quad \text{with} \quad Y = V
\]
\[
= (X^2 V X) X V = (X V X^2) X V \quad \text{by} \quad (2.7) \quad \text{with} \quad Y = V
\]
\[
= 0 \quad \text{by} \quad (2.6),
\]
which completes the proof of the theorem. \(\square\)

**Theorem 2.2.** Let \(L \subseteq Q\) be an extension of Lie algebras with \(Q\) a weak algebra of quotients of \(L\) and \(L\) strongly non-degenerate. Then

(i) \(Q\) is strongly non-degenerate ([15, Proposition 2.7(iii)]).

(ii) \(\text{Ann}_Q (L) = \text{QAnn}_Q (L) = 0\).

**Proof.** (i). Suppose that there exists a non-zero element \(a \in \text{QAnn}_Q (Q)\), and choose \(u \in L\) satisfying \(0 \neq x := [a, u] \in L\). Since \(L\) is strongly non-degenerate, \(z := [x, [x, v]] \neq 0\) for some \(v \in L\). But, by Theorem 2.1, \(z\) must be zero, a contradiction.

(ii). \(\text{Ann}_Q (L) = 0\) because \(Q\) is a weak algebra of quotients of \(L\). For \(a \in \text{QAnn}_Q (L)\), we have \(z := [x, [x, v]] \in \text{QAnn}_L (L)\) whenever \(x := [a, u] \in L\), with \(u \in L\) (Theorem 2.1). Now \(L\) being strongly non-degenerate implies \(\text{QAnn}_L (L) = 0\), whence \(x\) is zero. Since \(Q\) is a weak algebra of quotients of \(L\), we obtain that \(a = 0\). \(\square\)
Statement (ii) in the result below was proved by Zelmanov on [17, Corollary 2 on p. 543] for strongly non-degenerate Lie algebras, using the Kostrikin radical. Our proof here is based on elements.

**Proposition 2.3.** Let $I$ be a strongly non-degenerate ideal of a Lie algebra $L$. Then

(i) $\text{Ann}_L(I) = \text{QAnn}_L(I)$.

(ii) If $\text{Ann}_L(I) = 0$, then the algebra $L$ is strongly non-degenerate.

**Proof.** (i). Clearly, $\text{Ann}_L(I) \subseteq \text{QAnn}_L(I)$. Conversely, consider $a \in \text{QAnn}_L(I)$. The strong non-degeneracy assumption on $I$ implies that the map $I \to A(L)$ given by $y \mapsto \text{ad} y$ is a monomorphism of Lie algebras. Since $I$ is a strongly non-degenerate ideal of $L$, Theorem 2.1 implies that for every $u \in I$, the element $x = [a, u]$ is in $\text{QAnn}_L(I) = 0$, hence $a \in \text{Ann}_L(I)$.

(ii). In this case we have that $L$ is a weak algebra of quotients of $I$. Apply Theorem 2.2 to obtain that $L$ must be strongly non-degenerate too. 

If $A$ is an associative algebra, since every derivation maps $Z$ to $Z$, the set

$$I_Z = \{ \delta \in \text{Der}(A) \mid \delta(A) \subseteq Z \}$$

is easily seen to be a Lie ideal of $\text{Der}(A)$ that contains the center of $\text{Der}(A)$. Indeed, for every $\delta \in Z(\text{Der}(A))$ and each $a \in A$, we have that $0 = [\delta, \text{ad} a] = \text{ad} (\delta(a))$, hence $\delta(a) \in Z$. Moreover, under certain conditions, $\text{Inn}(A)$ can be seen as an essential ideal of $\text{Der}(A)/I_Z$.

**Lemma 2.4.** Let $A$ be a semiprime non-commutative associative algebra. Then

(i) $\text{Inn}(A)$ is (isomorphic to) an essential ideal of $\text{Der}(A)/I_Z$, where $I_Z$ is defined as before.

(ii) If $Z$ does not contain non-zero associative ideals (in particular, if $A$ is prime), then $I_Z = 0$.

**Proof.** (i). The map

$$\text{Inn}(A) \to \text{Der}(A)/I_Z$$

$$\text{ad} a \mapsto \text{ad} a$$

is a monomorphism of Lie algebras. This follows from the fact that

$$[a, A, A] = 0, \text{ with } a \in A, \text{ implies } a \in Z.$$

Indeed, $[[a, A], A] = 0$ implies, by [8, Sublemma on p. 5], that $[a, A] = 0$, that is, $\text{ad} a = 0$.

This allows us to identify $\text{Inn}(A)$ with its image inside $\text{Der}(A)/I_Z$. The formula $[\delta, \text{ad} a] = \text{ad} (\delta(a))$, where $a \in A$ and $\delta \in \text{Der}(A)$, ensures that $\text{Inn}(A)$ is indeed an ideal of $\text{Der}(A)/I_Z$.

Now let $J/I_Z$ be a non-zero ideal of $\text{Der}(A)$ and consider $\delta \in J \setminus I_Z$, that is, $[\delta(A), A] \neq 0$. A second application of (1) allows us to conclude that $[[\delta(A), A], A] \neq 0$. Take $a$ in $A$ such that $[\delta(a), A] \not\subseteq Z$. Then $\overline{0} \neq [\delta, \text{ad} a] = \text{ad} (\delta(a))$, and thus $\text{Inn}(A)$ is essential in $\text{Der}(A)/I_Z$.

(ii). Take $\delta \in I_Z$ and $d \in \text{Der}(A)$. Put $\mu = [\delta, d]$. For every pair of elements $a, b \in A$ we have $\mu([a, b]) = [\mu(a), b] + [a, \mu(b)]$. Note that $[\mu(a), b] = [\delta d(a), b] - [d\delta(a), b] = -[d\delta(a), b] = 0$, because $d(Z) \subseteq Z$, and analogously $[a, \mu(b)] = 0$. It follows from this that $\mu([A, A]) = 0$. 

Now let $I$ be a non-central Lie ideal of $A$, and take $y$ in $I \setminus Z$. Then $[y, A] \neq 0$ and by \[7\], we get $0 \neq [[y, A], A] \subseteq I \cap [A, A]$. Thus $[A, A]$ intersects non-trivially every non-central Lie ideal of $A$.

We claim that the subalgebra $\langle [A, A] \rangle$ generated by $[A, A]$ contains an essential associative ideal of $A$. Herstein’s \[7\] Theorem 3 implies that $\langle [A, A] \rangle$ contains a non-zero associative ideal. By Zorn’s Lemma, it is possible to find $M$ that is maximal among all the associative ideals contained in $\langle [A, A] \rangle$. If $\text{Ann}(M)$ were non-zero, we get from what we have just proved that $\text{Ann}(M) \cap [A, A] \neq 0$. Again by \[7\] Theorem 3, since $Z$ does not contain non-zero associative ideals, we have that $\langle \text{Ann}(M) \cap [A, A] \rangle$ contains a non-zero associative ideal $J$. Notice that $J$ is not contained in $M$, since otherwise $J \subseteq M \cap \text{Ann}(M)$, which is zero because $M$ is non-zero and $A$ is semiprime. Then $M \oplus J \subseteq M \oplus \text{Ann}(M) \cap [A, A]$ and $M \not\subseteq M \oplus J$, which contradicts the maximality of $M$.

By the first part of the proof we have $\mu([A, A]) = 0$, and so $\mu(I) = 0$, where $I$ is an essential ideal of $A$ contained in $\langle [A, A] \rangle$. This implies that $\mu = 0$. For, if $\mu(a) \neq 0$ for some $a \in A$, then the essentiality of $I$ implies that there exists $y \in I$ such that $y\mu(a) = 0$. But $y\mu(a) = \mu(ya) - \mu(y)a = 0$, a contradiction.

**Theorem 2.5.** Let $A$ be a semiprime non-commutative associative algebra. Then

(i) $\text{Der}(A)/I_Z$ is a strongly non-degenerate Lie algebra.

(ii) If $Z$ does not contain non-zero associative ideals (in particular, if $A$ is prime),

then $\text{Der}(A)$ is a strongly non-degenerate Lie algebra.

**Proof.** (i). Use \[5\] Lemma 5.2, Proposition \[2.3\] (ii) and Lemma \[2.4\] (i).

(ii) follows from (i) and statement (ii) in Lemma \[2.4\].

We now consider the case where our associative algebra $A$ has an involution $\ast$. Under some additional mild assumptions on $A$ in order to rule out algebras of low degrees, we obtain similar results on the non-degeneracy of $\text{SDer}(A)$. Rather than proving them in full, we just indicate which changes are needed to adjust Lemma \[2.4\] and Theorem \[2.5\] to the current setting.

Recall that if $A$ is a semiprime associative algebra, the extended centroid $C = C(A)$ of $A$ is defined as the center of the two-sided right ring of quotients. It also coincides with the center of $Q_s(A)$, the symmetric ring of quotients. For every $x$ in an algebra $A$ we define $\text{deg}(x)$ as the degree of algebraicity of $x$ over the extended centroid $C$, provided that $x$ is algebraic. If $x$ is not algebraic, then we define $\text{deg}(x) = \infty$. Put $\text{deg}(A) = \text{sup}\{\text{deg}(x) \mid x \in A\}$. It is well-known that $\text{deg}(A) < \infty$ if and only if $A$ is a PI algebra. Furthermore, it is known that $\text{deg}(A) = n < \infty$ if and only if $A$ satisfies the standard polynomial identity of degree $2n$ but does not satisfy any polynomial identity of degree $< 2n$, and this is further equivalent to the condition that $A$ can be embedded into the matrix algebra $M_n(F)$ for some field $F$ (one can take, say, $F$ to be the algebraic closure of $C$) but cannot be embedded into $M_{n-1}(R)$ for any commutative algebra $R$.

(a) The analogue of \[1\] in Lemma \[2.4\] is as follows:

If $A$ is a semiprime algebra with involution, then if $a$ belongs to the set of skew elements $K$ in $A$ and $[[a, K], K] = 0$, we get $[a, K] = 0$. To prove this, suppose $a \in K$ is such that $[a, K] \neq 0$. This means that $\[7\] \neq 0$, where $\[7\]$ denotes the class of $a$ in $K/Z_K$. But then $[[\tau, K/Z_K] \neq 0$, since $K/Z_K$ is semiprime by \[9\] Theorem 3], that is, $[[a, K], K] \neq 0$. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(b) The use of [7, Theorem 3] in the proof of statement (ii) in Lemma 2.4 must be changed to [12, Lemmas 2 and 3]. In order to apply these results, certain restrictions on the degree of the algebra are needed. Concretely, we need \( \text{deg}(A/I) > 2 \) for every \(*\)-prime ideal \( I \) of \( A \).

Recall that an ideal \( I \) in an algebra \( A \) with involution \( * \) is a \(*\)-ideal if \( I \) is invariant under the involution, that is, \( I^* = I \). The algebra \( A \) is said to be \(*\)-prime if the product of two non-zero \(*\)-ideals is again non-zero. A \(*\)-ideal \( I \) is said to be \(*\)-prime if \( A/I \) is a \(*\)-prime algebra. The definition of a \(*\)-semiprime algebra is analogous.

Define the following Lie ideal of \( \text{SDer}(A) \):

\[
I_{K,Z} = \{ \delta \in \text{SDer}(A) \mid \delta(K) \subseteq Z \}.
\]

In the current context, our Lemma 2.4 then takes the following form.

**Lemma 2.6.** Let \( A \) be a \(*\)-semiprime non-commutative associative algebra with involution \( * \). Then

(i) \( \text{Im}(K) \) is (isomorphic to) an essential ideal of \( \text{SDer}(A)/I_{K,Z} \), where \( I_{K,Z} \) is defined as before.

(ii) If \( Z(K) \) does not contain non-zero associative \(*\)-ideals (in particular, if \( A \) is \(*\)-prime), then \( I_{K,Z} = 0 \).

The analogue of [5, Lemma 5.2] (used in the proof of statement (i) in Theorem 2.5) is the proposition below, which again requires conditions on the degree of the algebra. In particular, it generalizes [11, Theorem 2.13]. Recall that an involution \( * \) in an associative algebra \( A \) is said to be of the first kind if it is the identity on the centroid of \( A \). Otherwise it is called an involution of the second kind.

**Proposition 2.7.** Let \( A \) be a \(*\)-semiprime algebra. Assume either that the involution \( * \) is of the second kind or that it is of the first kind and \( \text{deg}(A/I) > 2 \) for every \(*\)-prime ideal \( I \) of \( A \). Then \( [k,[k,K]] \subseteq Z(A) \), with \( k \in K \), implies \( k \in Z(A) \). In particular, \( K/(K \cap Z) \) is a strongly non-degenerate Lie algebra.

**Proof.** Let \( I \) be a \(*\)-ideal of \( A \). It is clear that \( A/I \) also becomes a \(*\)-algebra with the natural involution.

On the other hand, if \( \pi \) denotes the class of an element \( x \) in \( A/I \) and \( \overline{K} = \{ k \mid k \in K \} \), we have that \( \overline{K} = K_{A/I} \). The containment \( \overline{K} \subseteq K_{A/I} \) is clear. For the converse, take \( \pi \) in \( K_{A/I} \) and let \( y \in I \) be such that \( a^* + a = y \). Then \( (a^* - \frac{1}{2}y)^* = y - a - \frac{1}{2}y = -\frac{a}{2} + \frac{1}{2}y \); that is, \( a - \frac{1}{2}y \in K \), and so \( \pi = a - \frac{1}{2}y \in \overline{K} \).

Now, consider \( k \in K \) satisfying \( [k,[k,K]] \subseteq Z \). In particular, \( (\text{ad } k)^2(t) = 0 \) for every \( t \in K \). Arguing as in the proof of [5, Lemma 5.2], we obtain

\[
(\text{ad } k)^2 = 0.
\]

Let \( \{ I_\alpha \}_{\alpha \in \Lambda} \) be the collection of all \(*\)-prime ideals of \( A \). Since \( A \) is \(*\)-semiprime, \( \bigcap_{\alpha \in \Lambda} I_\alpha = 0 \). Suppose \( \overline{K}, A/I_\beta \neq 0 \) for some \( \beta \in \Lambda \). Since \( A/I_\beta \) is a \(*\)-prime algebra we may apply [2, Lemma 5.4] in order to conclude that \( Z(\overline{K}) = Z(A/I_\beta) \cap \overline{K} \), and hence \( [k,K] \neq 0 \). Use [2, Theorem 5.3] if \( *: A/I_\beta \rightarrow A/I_\beta \) is of the first
kind or \([\mathbb{I}]\) Theorem 2.13 if the involution is of the second kind to conclude that \([k, [k, k]] \neq 0\), in contradiction to \([\mathbb{I}]\). As a consequence, \([k, A/I_\alpha] = 0\) for every \(\alpha \in \Lambda\), that is, \([k, A] \subseteq \bigcap_{\alpha \in \Lambda} I_\alpha = 0\). \(\square\)

Finally, the involutive version of Theorem 2.5 is the following:

**Theorem 2.8.** Let \(A\) be a \(*\)-semiprime non-commutative associative algebra with \(\text{deg}(A/I) > 2\) for every \(*\)-prime ideal \(I\) of \(A\). Then

(i) \(\text{SDer}(A)/I_{K,Z}\) is a strongly non-degenerate Lie algebra.

(ii) If \(Z(K)\) does not contain non-zero associative \(*\)-ideals (in particular, if \(A\) is \(*\)-prime), then \(\text{SDer}(A)\) is a strongly non-degenerate Lie algebra.

**Acknowledgments**

Part of this work was carried out during visits of the first author to the Universidad de Málaga, and of the second one to the Centre de Recerca Matemàtica. We wish to thank the host centers for their warm hospitality. We also thank the referee for a careful reading of the manuscript and for simplifying our initial proof of Theorem 2.5.

**References**


**Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain**

*E-mail address*: perera@mat.uab.cat

**Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain**

*E-mail address*: msilesm@uma.es