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THE KADISON-SINGER PROBLEM
AND THE UNCERTAINTY PRINCIPLE

PETER G. CASAZZA AND ERIC WEBER

(Communicated by Michael T. Lacey)

Abstract. We compare and contrast the Kadison-Singer problem to the
Uncertainty Principle via exponential frames. Our results suggest that the
Kadison-Singer problem, if true, is in a sense a stronger version of the Uncer-
tainty Principle.

In 1959, Kadison and Singer answered in the negative [13] the well-known ques-
tion of unique pure state extensions: can a pure state on a C∗-subalgebra of B(H)
be extended uniquely to a pure state on all of B(H)? They showed that in general
the extension is not unique. However, they were unable to solve a special case of
this question: can a pure state on the algebra of diagonal operators in B(�2(Z)) be
extended uniquely to a pure state on all of B(�2(Z))? The answer to this special
case is still unknown, and the question is now called the Kadison-Singer problem
(KSP).

In 1979, Anderson stated what is now called the Paving Conjecture (PC): if
T ∈ B(�2(Z)) has zeroes on the diagonal, given ε > 0, does there exist a finite
partition {Aj}N

j=1 of Z such that

‖QAj
TQAj

‖ < ε?

Here QAj
is the canonical projection onto the subspace �2(Aj) ⊂ �2(Z). Anderson

proved that the PC is equivalent to the KSP [1, 2].
There is a finite dimensional version of the PC, which is equivalent to the infinite

dimensional version stated above, as follows:

Anderson Paving Conjecture. For ε > 0, there is a natural number N so that for
every natural number n and every linear operator T on ln2 whose matrix has zero
diagonal, we can find a partition (i.e. a paving) {Aj}N

j=1 of {1, . . . , n}, such that

‖QAj
TQAj

‖ ≤ ε‖T‖ for all j = 1, 2, . . . , N .

It is now known that the PC is equivalent to just paving any one of the fol-
lowing special classes of operators [9] (when we talk of paving a class of operators
without zero diagonal, we mean paving the operators with the diagonal removed):
unitary operators, orthogonal projections, positive operators, selfadjoint operators,
invertible operators, Gram matrices. Recently [8], it was shown that the PC is

Received by the editors May 16, 2007.
2000 Mathematics Subject Classification. Primary 42C15; Secondary 46L30.
The first author was supported by NSF DMS 0704216. Part of this research was carried out

while the authors were visiting AIM.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

4235



4236 PETER G. CASAZZA AND ERIC WEBER

equivalent to paving operators U with zero diagonal and satisfying U2 = I. It is
also shown in [8] that the PC is equivalent to paving orthogonal projections with
the constant 1/2 on the diagonal (and that this class cannot be paved with N = 2
paving sets). We believe that if it can be shown that this class is not N = 3
pavable, then a counterexample to the whole problem will follow. Also, it was
recently shown that the PC is equivalent to paving triangular matrices [15]. For
an up-to-date analysis of the status of the KSP and the PC we recommend the
website: http://www.aimath.org/pastworkshops/kadisonsinger.html.

There have been numerous (seemingly weaker) related problems and special cases
considered: paving Laurent operators [12]; invertibility of large submatrices [4, 5];
the Feichtinger conjecture [6]. All of these related problems remain unsolved in their
respective full generality. This is unsurprising, since it is now known that the KSP
is equivalent to the Bourgain-Tzafriri conjecture and the Feichtinger conjecture,
along with a host of other problems [7, 9, 10, 14].

Our purpose in this paper is to connect the KSP to the Uncertainty Principle,
indeed to demonstrate that the KSP is, if true, a much stronger version of the
Uncertainty Principle. We will show the extent to which the Uncertainty Principle
falls short of the KSP. We shall consider specifically two versions of the Uncertainty
Principle: the discrete version on the group ZN , and the semi-discrete version on
the dual groups Z and R/Z.

By “Suppose that the KSP is true” we mean that we suppose that every pure
state extension is unique. We point out here that Kadison and Singer themselves
“incline to the view” [13] that the KSP is false, that is, that the extensions are
not in general unique. Thus, the Uncertainty Principle provides one direction for
locating the strongest results which are true if (and when) it is shown that the KSP
is false in general.

1. Uncertainty and discrete exponential frames

Our first comparison between the KSP and the Uncertainty Principle is accom-
plished via discrete exponential frames. These arise from considering the Fourier
basis in the finite dimensional Hilbert space �2(ZN ). For v ∈ �2(ZN ), let v[k] denote
the k-th coordinate; or equivalently, we consider v to be a function on ZN , and v[k]
is the value at k ∈ ZN .

Let fj denote the j-th Fourier basis element in �2(ZN ), given by:

fj [k] =
1√
N

e2πijk/N .

For E ⊂ ZN , v ∈ �2(ZN ), we let vχE denote the element in �2(ZN ) such that
(vχE)[k] = v[k] if k ∈ E and 0 otherwise. This is equivalent to projecting v onto
the subspace �2(E) ⊂ �2(ZN ). Our discrete exponential frames are of the form
{fjχE : j ∈ F ⊂ ZN ; E ⊂ ZN}.

We recall the relevant definitions from frame theory. Let J be a finite or countable
index set and let H be a Hilbert space. We say X := {xj}j∈J ⊂ H is Bessel if the
following (formally densely defined) operator is well-defined and bounded:

Θ∗
X : �2(J) → H : (cj)j �→

∑
j∈J

cjxj .
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This is called the synthesis operator. If X is Bessel, then the adjoint ΘX of Θ∗
X

is

ΘX : H → �2(J) : v �→ (〈v, xj〉)j .

This is called the analysis operator.
The set X = {xj}j∈J is a Riesz basic sequence if

ΘXΘ∗
X : �2(J) → �2(J)

is invertible. If so, there are constants B1, B2 > 0, called the Riesz basis bounds,
such that

B1‖(cj)‖�2(J) ≤ ‖
∑
j∈J

cjxj‖H ≤ B2‖(cj)‖�2(J) ∀(cj) ∈ �2(J).

The set X is a frame if

Θ∗
XΘX : H → H

is invertible. If so, there are constants C1, C2 > 0, called the frame bounds, such
that

C1‖v‖2
H ≤

∑
j

|〈v, xj〉|2 ≤ C2‖v‖2
H ∀v ∈ H.

The operator ΘXΘ∗
X

is called the Grammian, or Gram matrix, for X; the entries
are given by 〈xj , xk〉.

As mentioned in the introduction, the following conjecture is related to the KSP:

Conjecture (Feichtinger). If {xj}j∈J is a Bessel sequence for which there is a
constant M > 0 such that ‖xj‖ ≥ M for all j ∈ J, is there a finite partition
{Ak}N

k=1 of J such that the subsets {xj}j∈Ak
are Riesz basic sequences?

It turns out that the Feichtinger conjecture is equivalent to the KSP: it was
shown in [6] that the KSP implies the Feichtinger conjecture, while the converse
was shown in [10]. Via the Feichtinger conjecture, we obtain a consequence of the
KSP for exponential frames.

Theorem 1. Suppose that the KSP is true. For the pair of sequences {EN}, {FN},
with EN , FN ⊂ {0, . . . , N − 1} and |EN | = O(N), then there exist constants K, L

independent of N such that FN can be partitioned into at most K subsets {Aj
N}

where {flχEN
|l ∈ Aj

N} is a Riesz basic sequence with lower basis bound greater than
L.

Proof. We consider the Hilbert space H =
⊕∞

N=1 �2(ZN ), and imbed the set
{flχEN

|l ∈ FN} in H by

flχEN
�→ 0 ⊕ · · · ⊕ 0︸ ︷︷ ︸

N−1

⊕flχEN
⊕ 0 ⊕ · · · .

Thus, we identify the set
⋃

N{flχEN
|l ∈ FN} with its image under the above

imbedding, and consider the resulting sequence as indexed by J = {(N, l) : N, l ∈
N; l ∈ FN}. We claim that this sequence is Bessel; indeed, for each N ∈ N, the set
{0 ⊕ · · · ⊕ 0 ⊕ flχEN

⊕ 0 ⊕ · · · } enjoys the property that for any v ∈ H, writing
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v =
⊕∞

N=1 vN , we have∑
l∈FN

|〈v, 0 ⊕ · · · ⊕ 0 ⊕ flχEN
⊕ 0 ⊕ · · · 〉|2 =

∑
l∈FN

|〈vN , flχEN
〉|2

≤
N∑

l=1

|〈χEN
vN , fl〉|2

≤ ‖vN‖2.

Therefore,
∞∑

N=1

∑
l∈FN

|〈v, 0 ⊕ · · · ⊕ 0 ⊕ flχEN
⊕ 0 ⊕ · · · 〉|2 =

∞∑
N=1

∑
l∈FN

|〈vN , flχEN
〉|2

≤
∞∑

N=1

‖vN‖2

= ‖v‖2.

Moreover, this sequence is bounded: that is, there exists an M > 0 such that
M ≤ ‖0 ⊕ · · · ⊕ 0 ⊕ flχEN

⊕ 0 ⊕ · · · ‖2. Indeed, we have

‖0 ⊕ · · · ⊕ 0 ⊕ flχEN
⊕ 0 ⊕ · · · ‖2 = ‖flχEN

‖2

=
|EN |
N

.

By assumption, |EN | = O(N), and thus there exists an M > 0 such that M ≤ |EN |
N

for all N .
Thus, we apply the Feichtinger conjecture formulation of the KSP to the bounded

Bessel sequence, which gives us that we can partition the index set J into A1, . . . , AK

with the property that each subset

{0 ⊕ · · · ⊕ 0 ⊕ flχEN
⊕ 0 ⊕ · · · |(N, l) ∈ Ak}

is a Riesz basic sequence with lower basis bound Lk. Let L = min{L1, . . . , LK}.
For each N ∈ N, the set

{0 ⊕ · · · 0 ⊕ flχEN
⊕ 0 ⊕ · · · |(N, l) ∈ Ak}

is a Riesz basic sequence with lower basis bound at least L, since it is a subset
of a Riesz basic sequence with lower basis bound at least L. Since the embedding
flχEN

�→ 0 ⊕ · · · 0 ⊕ flχEN
⊕ 0 ⊕ · · · is isometric, we have that for N fixed, the

set {flχEN
: (N, l) ∈ Ak} is again a Riesz basic sequence, with lower basis bound

at least L. This partitions {flχEN
|l ∈ FN} into K subsets, each with lower basis

bound at least L. �

Turning to the Uncertainty Principle for discrete exponential frames, we have
the following statement.

Theorem (Donoho-Stark [11]). If v ∈ �2(ZN ) (non-zero), then

|{k = 0, . . . , N − 1 : v(k) 
= 0}| · |{k = 0, . . . , N − 1 : v̂(k) 
= 0}| ≥ N.

Corollary 1. If E, F ⊂ {0, . . . , N − 1} and |F | <
N

N − |E| , then {fjχE : j ∈ F}
is a Riesz basic sequence.
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Proof. Suppose that
∑

j∈F cjfjχE = 0. Let v =
∑

j∈F cjfj . By definition, |{k =
1, . . . , N : v̂(k) 
= 0}| ≤ |F |. Moreover, since vχE = 0, we have that |{k = 1, . . . , N :
v(k) 
= 0}| ≤ N − |E|. By assumption, we have

|{k = 1, . . . , N : v(k) 
= 0}| · |{k = 1, . . . , N : v̂(k) 
= 0}| ≤ |F |(N − |E|) < N ;

therefore the Uncertainty Principle yields that v = 0, and hence cj = 0 for every j.
Thus, we have that {fjχE : j ∈ F} is a finite linearly independent set and hence is
a Riesz basic sequence. �

Theorem 2. Let {MN} be a sequence of positive integers such that α := supN N −
MN < ∞. For the pair of sequences {EN}, {FN}, with EN , FN ⊂ {0, . . . , N − 1}
and |EN | ≥ MN , then there exists a constant K := K(α) independent of N such
that there is a partition of {0, . . . , N − 1} into at most K subsets {Aj

N} where
{flχEN

: l ∈ Aj
N ∩ FN} is a Riesz basic sequence.

Proof. The proof is a consequence of Corollary 1. If EN ⊂ {0, . . . , N − 1} with

|EN | ≥ MN , then N − |EN | ≥ α. If K = �α + 1�, we have that
N

K
<

N

N − |EN |
for all N , and thus we can arbitrarily partition FN into K subsets {Ak

N : k =

1, . . . , K}, each of which has cardinality at most
N

K
. For each subset Ak

N , we have

|Ak
N | <

N

N − |EN | , and thus by Corollary 1 the set {flχEN
: l ∈ Ak

N} is a Riesz

basic sequence. �

Note 1. Of course, we can choose FN = {0, . . . , N − 1}. So, if we restrict the
Fourier basis to a subset of its domain, we can partition that frame into finitely
many linearly independent sets, and the number depends on the size of the subset
of the domain.

We mention here that the bound in Corollary 1, and hence also Theorem 2, is
the best possible. This is because the inequality in the Uncertainty Principle is
sharp; i.e., there exist extremal vectors v ∈ �2(ZN ) such that the bound is attained
whenever N is composite [11]. In fact, these extremal vectors have the form v = χE .

Therefore, the proof of Corollary 1 breaks down if |F | ≥ N

N − |E| and E corresponds

to one of these extremal cases. We refer to [11] for the details.
In view of Theorems 1 and 2, we see that both the KSP and the Uncertainty

Principle decompose discrete exponential frames into Riesz basic sequences. Note
how the Uncertainty Principle falls short: the primary weakness of the Uncertainty
Principle is that it requires a much stronger growth rate on the sets EN than does
the KSP. This is necessitated by the sharpness of the bound just mentioned in
Corollary 1. The secondary weakness is that the Uncertainty Principle does not
imply a common lower basis bound for the Riesz basic sequences, whereas the KSP
does.

Note that this suggests a possibility of more quantitative versions of the discrete
Uncertainty Principle. These quantitative versions would conceivably do the fol-
lowing: 1) account for the extremal cases; 2) give information regarding a lower
basis bound, and 3) close the current gap between the Uncertainty Principle and
the KSP.
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2. Uncertainty and Laurent operators

We now turn our attention to a similar comparison between the Uncertainty
Principle and the KSP applied to Laurent Operators via the PC. This comparison
is less illustrative than that of the discrete version in the previous section, but here
the direct application of the PC is more transparent.

A Laurent operator is a bounded operator T on �2(Z) which commutes with the
bilateral shift. The matrix form of T satisfies the condition that T [m + 1, n + 1] =
T [m, n]. Thus, the (m + 1)th row of T is the mth row shifted to the right by 1. If
x ∈ �2(Z), taking the Fourier transform yields:

T̂ x(ξ) = φ(ξ)x̂(ξ),

where φ(ξ) is the Fourier transform of the 0 row of T ; φ is essentially bounded
and is called the symbol of T . We normalize φ in the L1([0, 1]) norm, so that the
diagonal of T is 1.

We shall say that T is pavable if T − I is pavable in the sense of the definition
given in the introduction. Note here that the diagonal of T − I is 0.

It is not known if every Laurent operator is pavable, but many of them are [12]:

Theorem (Halpern-Kaftal-Weiss). If the symbol φ of the Laurent operator Tφ is
bounded and Riemann integrable, then Tφ is pavable (in fact uniformly pavable by
arithmetic progressions).

It is a long-standing open problem whether paving the Laurent operators is
equivalent to KSP.

If we let {xn : n ∈ Z} denote the rows of Tφ, then the Fourier transform of the
rows yields the set {e2πinξφ(ξ) : n ∈ Z}. This sequence of exponentials is a Bessel
sequence in L2([0, 1]), since φ ∈ L∞([0, 1]) [3]. Conversely, if {e2πinξψ(ξ) : n ∈ Z}
is a Bessel sequence in L2([0, 1]), then there is a corresponding Laurent operator
Tψ on �2(Z).

Paving a Laurent operator decomposes an exponential Bessel sequence into
finitely many Riesz basic sequences, just as the KSP decomposes discrete expo-
nential frames into Riesz basic sequences.

Theorem 3. Suppose that Tφ is a Laurent operator with normalized symbol φ. If
Tφ is pavable, then the Bessel sequence {e2πinξφ(ξ) : n ∈ Z} satisfies the Feichtinger
conjecture. That is to say, there is a finite partition {Ak}K

k=1 such that each subset
{e2πinξφ(ξ) : n ∈ Ak} is a Riesz basic sequence. Moreover, given 1 > ε > 0 we may
choose the partition so that each subset has lower Riesz basis bound greater than
1 − ε.

Proof. Let 1 > ε > 0 be given, and choose a δ > 0 such that δ2 + 2δ < ε.
Pave Tφ with the threshhold of δ; i.e., find a finite partition {Ak}K

k=1 such that
‖QAk

(Tφ − I)QAk
‖ < δ. We claim that for each k = 1, . . . , K, {e2πinξφ(ξ) :

n ∈ Ak} is a Riesz basic sequence with lower basis bound greater than 1 − ε.
Let Mk denote the submatrix of Tφ given by QAk

(Tφ)QAk
. Regarding Mk :

�2(Ak) → �2(Ak), we can write Mk = I + B, where ‖B‖ < δ, owing to the fact
that Mk has 1’s on the diagonal, whence ‖Mk − I‖ = ‖QAk

(Tφ − I)QAk
‖ < δ.

Furthermore, we regard Mk as the analysis operator of the vectors given by its rows
(adjusting suitably for the necessary conjugate); since ‖B‖ < 1, Mk is invertible,
and therefore the rows form a Riesz basis for �2(Ak). Now, the basis bounds for
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the rows of Mk can be estimated by the spectrum of MkM∗
k : if

AI ≤ MkM∗
k ≤ BI,

then
√

A and
√

B are basis bounds for the rows of Mk. Note that MkM∗
k =

I + B + B∗ + BB∗, so by virtue of ‖B + B∗ + BB∗‖ < 2δ + δ2 and the spectral
mapping theorem, we have that

(1 − ε)I ≤ MkM∗
k ≤ (1 + ε)I.

Therefore, the rows of Mk form Riesz basic sequences with lower basis bound greater
than

√
1 − ε > 1 − ε.

Now, the rows of Tφ corresponding to Ak enjoy the same property. Indeed, let
{xn : n ∈ Ak} denote the rows of Tφ; we can write xn = QAk

xn + yn, where
{yn ∈ �2(Ãk) : n ∈ Ak} is a Bessel sequence (the rows of Tφ form a Bessel sequence,
and thus {yn : n ∈ Ak} is the projection of a Bessel sequence). Thus, we have
xn = zn ⊕ yn ∈ �2(Ak)⊕ �2(Ãk), with {zn : n ∈ Ak} the rows from the matrix Mk.
Appealing to Lemma 1 below yields the claim that {xn : n ∈ Ak} is a Riesz basic
sequence with lower basis bound greater than 1 − ε.

Note that the nth row of Tφ, xn, satisfies the condition Snx0 = xn, where
S : �2(Z) → �2(Z) is the bilateral shift. If we take the Fourier transform of the
set {xn : n ∈ Ak} = {Snx0 : n ∈ Ak}, we obtain the set {e2πinξφ(ξ) : n ∈ Ak},
since the Fourier transform maps x0 to φ. Since the Fourier transform is a unitary
operator, we have that {e2πinξφ(ξ) : n ∈ Ak} is a Riesz basic sequence with lower
basis bound greater than 1 − ε. �

It is not known at this time if the KSP for Laurent operators is equivalent to
the Feichtinger Conjecture for Bessel sequences of exponential functions.

Lemma 1. Suppose {vn} ⊂ H is a Riesz basic sequence with lower bound A, and
{wn} ⊂ H̃ is a Bessel sequence. Then {vn⊕wn} ∈ H ⊕ H̃ is a Riesz basic sequence
with lower basis bound A.

Proof. Let cn be such that
∑

n |cn|2 < ∞. Since {vn} is a Riesz basic sequence
with lower bound A, we have:

‖
∑

n

cn(vn ⊕ wn)‖2 = ‖
∑

n

cnvn‖2 + ‖
∑

n

cnwn‖2

≥ ‖
∑

n

cnvn‖2

≥ A2
∑

n

|cn|2.

�

We have seen that the KSP, via the PC, wants to decompose a Bessel sequence of
exponential functions into Riesz basic sequences. Now consider the results obtained
from the Uncertainty Principle.

Theorem (Smith [16]). If f ∈ L2[0, 1] is nonzero, supported on V ⊂ [0, 1], and f̂
is supported on W ⊂ Z, then |V ||W | ≥ 1, where |V | is the Lebesgue measure of V
and |W | is the cardinality of W .
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Corollary 2. If E ⊂ [0, 1] (measurable) and W ⊂ Z such that (1 − |E|)|W | < 1,
then

{e2πinξχE(ξ) : n ∈ W}
is a Riesz basic sequence.

Proof. Suppose that
∑

n∈W cne2πinξχE(ξ) = 0. Then the function f(ξ) =∑
n∈W cne2πinξ satisfies the conditions supp(f̂) ⊂ W and supp(f) ⊂ [0, 1] \ E, so

if f is not zero, we would have |V ||W | < 1, where V = [0, 1] \ E, a violation of the
Uncertainty Principle. Since W is necessarily finite, we have {e2πinξχE(ξ) : n ∈ W}
is a Riesz basic sequence. �

Therefore, the Uncertainty Principle allows us to decompose {e2πinξχE(ξ) : n ∈
Z} into linearly independent subsets, each of which is finite, and thus each subset
is a Riesz basic sequence. Notice that each partition element is finite, so the size of
the partition is infinite. Furthermore, the Uncertainty Principle is actually weaker
here than other considerations, since we know that for any measurable non-null E
and any finite W , the set {e2πinξχE(ξ) : n ∈ W} is linearly independent, regardless
of whether (1 − |E|)|W | < 1. Also, from [6] it is known that every bounded Bessel
sequence is a finite union of (finitely) linearly independent sets.
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