Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Cesàro function spaces fail the fixed point property

Authors: Sergei V. Astashkin and Lech Maligranda
Journal: Proc. Amer. Math. Soc. 136 (2008), 4289-4294
MSC (2000): Primary 46E30, 46B20, 46B42
Published electronically: June 26, 2008
MathSciNet review: 2431042
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Cesàro sequence spaces $ ces_{p}, 1 < p < \infty$, are reflexive but they have the fixed point property. In this paper we prove that in contrast to these sequence spaces the corresponding Cesàro function spaces $ Ces_{p}$ on both $ [0, 1]$ and $ [0, \infty)$ for $ 1 < p < \infty$ are not reflexive and they fail to have the fixed point property.

References [Enhancements On Off] (What's this?)

  • 1. D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82(1981), 423-424. MR 612733 (82j:47070)
  • 2. S. V. Astashkin and L. Maligranda, Geometry of Cesàro function spaces, in preparation.
  • 3. G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc. 120, Providence, 1996. MR 1317938 (96h:26020)
  • 4. S. Chen, Y. Cui, H. Hudzik and B. Sims, Geometric properties related to fixed point theory in some Banach function lattices, in: Handbook on Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, 339-389. MR 1904283 (2003f:46031)
  • 5. Y. Cui and H. Hudzik, Some geometric properties related to fixed point theory in Cesàro sequence spaces, Collect. Math. 50(1999), 277-288. MR 1744077 (2001f:46033)
  • 6. Y. Cui, H. Hudzik and Y. Li, On the García-Falset coefficient in some Banach sequence spaces, in: Function Spaces, Proc. of the 5th International Conf. in Poznan (Aug. 28-Sept. 3, 1998), Marcel Dekker, New York, 2000, 141-148. MR 1772119 (2001h:46009)
  • 7. Y. Cui, C. Meng and R. Płuciennik, Banach-Saks property and property ($ \beta$) in Cesàro sequence spaces, Southeast Asian Bull. Math. 24(2000), 201-210. MR 1810056 (2001m:46031)
  • 8. S. Dilworth, M. Girardi and J. Hagler, Dual Banach spaces which contain an isometric copy of $ L_{1}$, Bull. Polish Acad. Sci. Math. 48(2000), no. 1, 1-12. MR 1751149 (2001e:46016)
  • 9. P. N. Dowling and C. J. Lennard, Every nonreflexive subspace of $ L_{1}[0,1]$ fails the fixed point property, Proc. Amer. Math. Soc. 125(1997), no. 2, 443-446. MR 1350940 (97d:46034)
  • 10. P. N. Dowling, C. J. Lennard and B. Turett, Renormings of $ l^{1}$ and $ c_{0}$ and fixed point properties, In: Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, 269-297. MR 1904280 (2004f:46021)
  • 11. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1952. MR 0046395 (13:727e)
  • 12. B. D. Hassard and D. A. Hussein, On Cesàro function spaces, Tamkang J. Math. 4(1973), 19-25. MR 0333700 (48:12025)
  • 13. A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality. About Its History and Some Related Results, Vydavatelski Servis Publishing House, Pilzen, 2007. MR 2351524
  • 14. Y. Q. Liu, B. E. Wu and P. Y. Lee, Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996 (in Chinese).
  • 15. L. Maligranda, N. Petrot and S. Suantai, On the James constant and $ B$-convexity of Cesàro and Cesàro-Orlicz sequence spaces, J. Math. Anal. Appl. 326(2007), no. 1, 312-331. MR 2277785 (2007m:46023)
  • 16. J. S. Shiue, A note on Cesàro function space, Tamkang J. Math. 1(1970), 91-95. MR 0276751 (43:2491)
  • 17. P. W. Sy, W. Y. Zhang and P. Y. Lee, The dual of Cesàro function spaces, Glas. Mat. Ser. III 22(1987), no. 1, 103-112. MR 940098 (89g:46059)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E30, 46B20, 46B42

Retrieve articles in all journals with MSC (2000): 46E30, 46B20, 46B42

Additional Information

Sergei V. Astashkin
Affiliation: Department of Mathematics and Mechanics, Samara State University, Acad. Pavlov 1, 443011 Samara, Russia

Lech Maligranda
Affiliation: Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

Keywords: Ces{\`a}ro sequence spaces, Ces{\`a}ro function spaces, fixed point property, asymptotically isometric copy of $ l^1$, $B$-convex spaces
Received by editor(s): October 18, 2007
Published electronically: June 26, 2008
Additional Notes: This research was supported by a grant from the Royal Swedish Academy of Sciences for cooperation between Sweden and the former Soviet Union (project 35440). The results were presented by the second author at The 8th International Conference on Fixed Point Theory and Its Applications, 16-22 July 2007, Chiang Mai, Thailand.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society