Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A short proof of Hara and Nakai's theorem


Author: Byung-Geun Oh
Journal: Proc. Amer. Math. Soc. 136 (2008), 4385-4388
MSC (2000): Primary 30H05, 30D55
DOI: https://doi.org/10.1090/S0002-9939-08-09610-X
Published electronically: July 23, 2008
MathSciNet review: 2431053
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a short proof of the following theorem of Hara and Nakai: for a finitely bordered Riemann surface $ R$, one can find an upper bound of the corona constant of $ R$ that depends only on the genus and the number of boundary components of $ R$.


References [Enhancements On Off] (What's this?)

  • 1. Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100-134. MR 0036318 (12:90b)
  • 2. N. Alling, A proof of the corona conjecture for finite open Riemann surfaces, Bull. Amer. Math. Soc. 70 (1964), 110-112. MR 0156967 (28:209)
  • 3. D. E. Barrett and J. Diller, A new construction of Riemann surfaces with corona, J. Geom. Anal. 8 (1998), 341-347. MR 1707732 (2000j:30076)
  • 4. M. Behrens, The corona conjecture for a class of infinitely connected domains, Bull. Amer. Math. Soc. 76 (1970), 387-391. MR 0256166 (41:825)
  • 5. M. Behrens, The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains, Trans. Amer. Math. Soc. 161 (1971), 359-379. MR 0435420 (55:8380)
  • 6. L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. MR 0141789 (25:5186)
  • 7. Peter L. Duren, Theory of $ H\sp{p}$ spaces, Pure and Applied Mathematics 38, Academic Press, New York-London, 1970. MR 0268655 (42:3552)
  • 8. T. W. Gamelin, Localization of the corona problem, Pacific J. Math. 34 (1970), 73-81. MR 0276742 (43:2482)
  • 9. T. W. Gamelin, Uniform algebras and Jensen measures, London Mathematical Society Lecture Note Series 32, Cambridge University Press, Cambridge-New York, 1978. MR 521440 (81a:46058)
  • 10. J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics 96, Academic Press, Inc., New York-London, 1981. MR 628971 (83g:30037)
  • 11. J. B. Garnett and P. W. Jones, The Corona theorem for Denjoy domains, Acta Math. 155 (1985), 27-40. MR 793236 (87e:30044)
  • 12. Masaru Hara and Mitsuru Nakai, Corona theorem with bounds for finitely sheeted disks, Tohoku Math. J. (2) 37 (1985), no. 2, 225-240. MR 788130 (86h:30079)
  • 13. M. Hayashi, Bounded analytic functions on Riemann surfaces, in: Aspects of complex analysis, differential geometry, mathematical physics and applications (St. Konstantin, 1998), World Sci. Publishing, River Edge, NJ, 1999, 45-59. MR 1731200 (2001i:30045)
  • 14. P. Jones and D. Marshall, Critical points of Green's functions, harmonic measure and the corona problem, Ark. Mat. 23 (1985), 281-314. MR 827347 (87h:30101)
  • 15. Mitsuru Nakai, The corona problem on finitely sheeted covering surfaces, Nagoya Math. J. 92 (1983), 163-173. MR 726148 (86b:30072)
  • 16. Byung-Geun Oh, An explicit example of Riemann surfaces with large bounds on the corona solutions, Pacific J. Math. 228 (2006), no. 2, 297-304. MR 2274522 (2007h:30053)
  • 17. E. L. Stout, Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255-285. MR 0183882 (32:1358)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30H05, 30D55

Retrieve articles in all journals with MSC (2000): 30H05, 30D55


Additional Information

Byung-Geun Oh
Affiliation: Department of Mathematics Education, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
Email: bgoh@hanyang.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-08-09610-X
Keywords: Corona problem, bounded analytic function
Received by editor(s): November 14, 2007
Published electronically: July 23, 2008
Additional Notes: This work was supported by the research fund of Hanyang University (HY-2007-000-0000-4844).
Communicated by: Mario Bonk
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society