Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Upper bounds for finite additive $ 2$-bases


Author: Gang Yu
Journal: Proc. Amer. Math. Soc. 137 (2009), 11-18
MSC (2000): Primary 11B13
DOI: https://doi.org/10.1090/S0002-9939-08-09430-6
Published electronically: July 18, 2008
MathSciNet review: 2439419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a positive integer $ N$, a set $ \mathcal{A}\subset [0,N]\cap\mathbb{Z}$ is called a $ 2$-basis for $ N$ if every integer $ n\in [0,N]$ can be represented as $ n=a+b$, where $ a, b\in\mathcal{A}$. In this paper, we give a lower bound estimate for the cardinality of an additive $ 2$-basis for $ N$, as $ N\to\infty$, which improves the existing results on this topic.


References [Enhancements On Off] (What's this?)

  • 1. C. Güntürk and M. Nathanson, A new upper bound for finite additive bases, Acta Arith., 124(2006), 235-255. MR 2250418 (2007f:11012)
  • 2. N. Hämmerer and G. Hofmeister, Zu einer Vermutung von Rohrbach, J. Reine Angew. Math., 286/287(1976), 239-247. MR 0422189 (54:10181)
  • 3. G. Hofmeister, Thin bases of order two, J. Number Theory, 86(2001), 118-132. MR 1813532 (2001m:11018)
  • 4. W. Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. Reine Angew. Math., 238(1969), 161-168. MR 0246848 (40:117)
  • 5. L. Moser, On the representation of $ 1, 2, \ldots, n$ by sums, Acta Arith., 6(1960), 11-13. MR 0122800 (23:A133)
  • 6. L. Moser, J. Pounder and J. Riddell, On the cardinality of $ h$-bases for $ n$, J. London Math. Soc., 44(1969), 397-407. MR 0238798 (39:162)
  • 7. A. Mrose, Untere Schranken für die Reichweiten von Extremalbasen fester Ordnung, Abh. Math. Sem. Univ. Hamburg, 48(1979), 118-124. MR 537452 (80g:10058)
  • 8. J. Riddell, On bases for sets of integers, Master's Thesis, University of Alberta, 1960.
  • 9. H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z., 42(1937), 1-30. MR 1545658
  • 10. G. Yu, An upper bound for $ B_2[g]$ sets, J. Number Theory, 122(2007), no. 1, 211-220. MR 2287120 (2008a:11012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11B13

Retrieve articles in all journals with MSC (2000): 11B13


Additional Information

Gang Yu
Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
Email: yu@math.kent.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09430-6
Received by editor(s): June 25, 2007
Received by editor(s) in revised form: November 15, 2007
Published electronically: July 18, 2008
Additional Notes: The author was supported by NSF grant DMS-0601033.
Communicated by: Ken Ono
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society