Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nakajima's problem for general convex bodies


Author: Daniel Hug
Journal: Proc. Amer. Math. Soc. 137 (2009), 255-263
MSC (2000): Primary 52A20; Secondary 52A39, 53A05
DOI: https://doi.org/10.1090/S0002-9939-08-09432-X
Published electronically: July 8, 2008
MathSciNet review: 2439448
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a convex body $ K\subset\mathbb{R}^n$, the $ k$th projection function of $ K$ assigns to any $ k$-dimensional linear subspace of $ \mathbb{R}^n$ the $ k$-volume of the orthogonal projection of $ K$ to that subspace. Let $ K$ and $ K_0$ be convex bodies in $ \mathbb{R}^n$, and let $ K_0$ be centrally symmetric and satisfy a weak regularity assumption. Let $ i,j\in\mathbb{N}$ be such that $ 1\le i<j\le n-2$ with $ (i,j)\neq (1,n-2)$. Assume that $ K$ and $ K_0$ have proportional $ i$th projection functions and proportional $ j$th projection functions. Then we show that $ K$ and $ K_0$ are homothetic. In the particular case where $ K_0$ is a Euclidean ball, we thus obtain characterizations of Euclidean balls as convex bodies having constant $ i$-brightness and constant $ j$-brightness. This special case solves Nakajima's problem in arbitrary dimensions and for general convex bodies for most indices $ (i,j)$.


References [Enhancements On Off] (What's this?)

  • 1. A. D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (in Russian), translated into English by A. J. Ostaszewski, Uchenye Zapiski Leningrad Gos. Univ., Math. Ser. 6 (1939), 3-35. MR 0003051 (2:155a)
  • 2. Ch. Bauer, Intermediate surface area measures and projection functions of convex bodies, Arch. Math. 64 (1995), 69-74. MR 1305662 (95k:52010)
  • 3. S. Campi, Reconstructing a convex surface from certain measurements of its projections, Boll. Un. Mat. Ital. B (6) 5 (1986), 945-959. MR 871707 (88f:52004)
  • 4. G. D. Chakerian, Sets of constant relative width and constant relative brightness, Trans. Amer. Math. Soc. 129 (1967), 26-37. MR 0212678 (35:3545)
  • 5. G. D. Chakerian, H. Groemer, Convex bodies of constant width, Convexity and its applications, 49-96, Birkhäuser, Basel, 1983. MR 731106 (85f:52001)
  • 6. G. D. Chakerian, E. Lutwak, Bodies with similar projections, Trans. Amer. Math. Soc. 349 (1997), 1811-1820. MR 1390034 (98a:52011)
  • 7. H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved problems in geometry. Corrected reprint of the 1991 original. Problem Books in Mathematics. Unsolved Problems in Intuitive Mathematics, II. Springer-Verlag, New York, 1994. MR 1107516 (92c:52001)
  • 8. W. J. Firey, Convex bodies of constant outer $ p$-measure, Mathematika 17 (1970), 21-27. MR 0267465 (42:2367)
  • 9. R. J. Gardner, Geometric tomography, Encyclopedia of mathematics and its applications, vol. 58, Cambridge University Press, New York, 1995. MR 1356221 (96j:52006)
  • 10. R. Gardner, A. Volčič, Tomography of convex and star bodies, Adv. Math. 108 (1994), 367-399. MR 1296519 (95j:52013)
  • 11. P. Goodey, R. Schneider, W. Weil, Projection functions of convex bodies, Intuitive geometry (Budapest, 1995), Bolyai Soc. Math. Stud., vol. 6, János Bolyai Math. Soc., Budapest, 1997, pp. 23-53. MR 1470754 (98k:52020)
  • 12. P. Goodey, R. Schneider, W. Weil, On the determination of convex bodies by projection functions, Bull. London Math. Soc. 29 (1997), 82-88. MR 1416411 (97g:52017)
  • 13. P. Goodey, R. Howard, Examples and structure of smooth convex bodies of constant $ k$-brightness (in preparation).
  • 14. P. Goodey, G. Zhang, Inequalities between projection functions of convex bodies, Am. J. Math. 120, No. 2 (1998), 345-367. MR 1613642 (99h:52010)
  • 15. E. Grinberg, G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), 77-115. MR 1658156 (99m:52009)
  • 16. E. Heil, H. Martini, Special convex bodies, Handbook of convex geometry, Vol. A, 347-385, North-Holland, Amsterdam, 1993. MR 1242985 (94h:52001)
  • 17. R. Howard, Convex bodies of constant width and constant brightness, Adv. Math. 204 (2006), 241-261. MR 2233133 (2007f:52004)
  • 18. R. Howard, D. Hug, Smooth convex bodies with proportional projection functions, Israel J. Math. 159 (2007), 317-341. MR 2342484
  • 19. R. Howard, D. Hug, Nakajima's problem: convex bodies of constant width and constant brightness, Mathematika (to appear).
  • 20. D. Hug, Contributions to affine surface area, Manuscripta Math. 91 (1996), 283-301. MR 1416712 (98d:52009)
  • 21. D. Hug, Absolute continuity for curvature measures of convex sets II, Math. Z. 232 (1999), 437-485. MR 1719698 (2000m:52009)
  • 22. P. McMullen, On the inner parallel body of a convex body, Israel J. Math. 19 (1974), 217-219. MR 0367810 (51:4052)
  • 23. S. Nakajima, Eine charakteristische Eigenschaft der Kugel, Jber. Deutsche Math.-Verein 35 (1926), 298-300.
  • 24. R. Schneider, Convex bodies: The Brunn-Minkowski theory, Encyclopedia of mathematics and its applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • 25. R. Schneider, Polytopes and Brunn-Minkowski theory. Polytopes: abstract, convex and computational (Scarborough 1993), NATO Adv. Sci. Inst. Ser. C 440 (ed., Bisztriczky et al.), Kluwer, Dordrecht, 1994, 273-299. MR 1322067 (96a:52016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 52A20, 52A39, 53A05

Retrieve articles in all journals with MSC (2000): 52A20, 52A39, 53A05


Additional Information

Daniel Hug
Affiliation: Fakultät für Mathematik, Institut für Algebra und Geometrie, Universität Karlsruhe (TH), KIT, D-76128 Karlsruhe, Germany
Email: daniel.hug@kit.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09432-X
Received by editor(s): July 12, 2007
Received by editor(s) in revised form: November 20, 2007
Published electronically: July 8, 2008
Additional Notes: The author was supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN-511953.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society