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Abstract. Let M be a finitely generated module of dimension d over a Noe-
therian local ring (R, m) and q an ideal generated by a system of parameters
x = (x1, . . . , xd) of M . For each positive integer n, set

Λd,n = {α = (α1, . . . , αd) ∈ Z
d|αi � 1, 1 � i � d and

d∑
i=1

αi = d + n − 1}

and q(α) = (xα1
1 , . . . , x

αd
d ) for each α ∈ Λd,n. Then we prove in this note that

M is a sequentially Cohen-Macaulay module if and only if there exists a good
system of parameters x such that the equality qnM =

⋂
α∈Λd,n

q(α)M holds

true for all n ≥ 1. As an application, we show that the sequentially Cohen-
Macaulayness of a module can be characterized by a very special expression
of the Hilbert-Samuel polynomial of a good parameter ideal.

1. Introduction

Throughout this paper we denote by R a commutative Noetherian local ring with
the maximal ideal m and by M a finitely generated R-module with dim M = d. Let
x = x1, . . . , xd be a system of parameters of the module M and q = (x1, . . . , xd)
the parameter ideal of M generated by x. For each integer n � 1, we set

Λd,n = {(α1, . . . , αd) ∈ Z
d|αi � 1 for all 1 � i � d and

d∑
i=1

αi = d + n − 1}.

Let q(α) = (xα1
1 , . . . , xαd

d ) for each α = (α1, . . . , αd) ∈ Λd,n. We say that the system
x of parameters has the property of parametric decomposition if the equality qnM =⋂
α∈Λd,n

q(α)M holds true for all n � 1. The main purpose of this paper is to study the

question of when a given system of parameters of M has the property of parametric
decomposition. Notice that Heinzer, Ratliff and Shah [HRS, Theorem 2.4] proved
that an R-regular sequence always has the property of parametric decomposition.
Later, Goto and Shimoda [GS1, Theorem 1.1] showed that the converse is also true
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when each element of the sequence is a non-zerodivisor in R. Moreover, they gave
in [GS2, Theorem 1.1] a characterization of R with dimR � 2, in which every
system of parameters of R has the property of parametric decomposition. In order
to generalize this result of Goto and Shimoda, let us recall some notions which
were defined in [CC]. A filtration D : H0

m(M) = D0 ⊂ D1 ⊂ . . . ⊂ Dt = M of
submodules of M is said to be a dimension filtration if Di−1 is the largest submodule
of Di with dimDi−1 < dimDi for all i = t, t − 1, . . . , 1. If Di/Di−1 is Cohen-
Macaulay for all 1 ≤ i ≤ t, M is called a sequentially Cohen-Macaulay module. A
system x = x1, . . . , xd of parameters of M is called a good system of parameters
of M if Di ∩ (xdi+1, . . . , xd)M = 0 for all 0 ≤ i ≤ t − 1, where di = dimDi.
Now, we restrict our interest in the above question to the set of all good systems
of parameters of M . It turns out that the property of parametric decomposition
of a good system of parameters can be characterized by the sequentially Cohen-
Macaulayness of the module. The following theorem is the main result of this
paper.

Theorem 1.1. The following statements are equivalent:
(i) M is a sequentially Cohen-Macaulay module.
(ii) Every good system of parameters of M has the property of parametric de-

composition.
(iii) There exists a good system of parameters of M having the property of para-

metric decomposition.

As a consequence of Theorem 1.1 we again obtain the main result of Goto-
Shimoda [GS2, Theorem 1.1]. It should be noted here that Theorem 1.1 of [GS2]
was stated for local rings, but its proof still works in the module case.

Corollary 1.2. Let dimM � 2 and H0
m(M) the 0th local cohomology module of M

with respect to the maximal ideal m. Then the following statements are equivalent:
(i) M/H0

m(M) is a Cohen-Macaulay module and mH0
m(M) = 0.

(ii) Every system of parameters of M has the property of parametric decomposi-
tion.

Before we give proofs for Theorem 1.1 and its corollary in Section 3, we need
some basic facts on good systems of parameters and sequentially Cohen-Macaulay
modules, which will be summarized in Section 2. In Section 4 we shall show that the
Hilbert-Samuel polynomial of a sequentially Cohen-Macaulay module M with re-
spect to a good parameter ideal can be computed effectively by using the dimension
filtration D of M (Theorem 4.1).

2. Preliminaries

Throughout this paper, R is a Noetherian local commutative ring with maximal
ideal m and M is a finitely generated R-module with dimM = d. Let x = x1, . . . , xd

be a system of parameters of the module M , and we denote by q the ideal generated
by x1, . . . , xd. For positive integers n, we set

Λd,n = {(α1, . . . , αd) ∈ Z
d|αi � 1 for all 1 � i � d and

d∑
i=1

αi = d + n − 1}.

Let q(α) = (xα1
1 , . . . , xαd

d ) for each α = (α1, . . . , αd) ∈ Λd,n. Then qnM ⊆⋂
α∈Λd,n

q(α)M , and if the equality qnM =
⋂

α∈Λd,n

q(α)M holds true for a system
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of parameters x of M , we say that x has the property of parametric decomposi-
tion. Recall that a filtration D : H0

m(M) = D0 ⊂ D1 ⊂ . . . ⊂ Dt = M of
submodules of M is said to be a dimension filtration if Di−1 is the largest sub-
module of Di with dim Di−1 < dimDi for all i = t, t − 1, . . . , 1, and a system
of parameters x = x1, . . . , xd of M is called a good system of parameters of M if
Di ∩ (xdi+1, . . . , xd)M = 0 for all 0 ≤ i ≤ t − 1, where di = dim Di.

Now, let us briefly give some facts on the dimension filtration and good systems
of parameters (see [CC], [CN]). Because of the Noetherian property of M , the
dimension filtration of M exists uniquely. Therefore, in the sequel we always denote
by

D : H0
m(M) = D0 ⊂ D1 ⊂ . . . ⊂ Dt = M

with dimDi = di the dimension filtration of M . In this case, we also say that the
dimension filtration D of M has length t. Moreover, let

⋂
p∈AssM N(p) = 0 be a

reduced primary decomposition of 0 of M ; then Di =
⋂

dim(R/p)�di+1
N(p). Put

Ni =
⋂

dim(R/p)�di
N(p). Therefore Di ∩ Ni = 0 and dim(M/Ni) = di. By the

Prime Avoidance there exists a system of parameters x = (x1, . . . , xd) such that
xdi+1, . . . , xd ∈ Ann (M/Ni). It follows that Di ∩ (xdi+1, . . . , xd)M ⊆ Ni ∩ Di = 0
for all 0 ≤ i ≤ t − 1. Thus x = x1, . . . , xd is a good system of parameters of M ,
and therefore the set of good systems of parameters of M is non-empty. Let x =
x1, . . . , xd be a good system of parameters of M . It easy to see that x1, . . . , xdi

is a
good system of parameters of Di and xn1

1 , . . . , xnd

d is a good system of parameters
of M for any d-tuple of positive integers n1, . . . , nd.

Lemma 2.1. Let x = x1, . . . , xd be a good system of parameters of M . Then
Di = 0 :M xj for all di < j ≤ di+1and 0 ≤ i ≤ t − 1, and therefore 0 :M xl

i =
0 :M xi for all l ≥ 1.

Proof. Since Di ∩ (xdi+1, . . . , xd)M = 0, we have Di ⊆ 0 :M xj for all j � di.
Thus it suffices to prove that 0 :M xj ⊆ Dj for every di < j � di+1. Assume
that 0 :M xj �⊆ Di. Let s be the largest integer such that 0 :M xj �⊆ Ds−1. Then
t � s > i and 0 :M xj = 0 :Ds

xj . Since ds � di+1 � j, xj is a parameter element
of Ds and dim(0 :M xj) < ds. Hence 0 :M xj ⊆ Ds−1 by the maximality of Ds−1.
This contradicts the choice of s. Therefore 0 :M xj = Di. �

Recall that M is said to be a sequentially Cohen-Macaulay module if each quotient
Di/Di−1 in the dimension filtration of M is Cohen-Macaulay. Notice that the
notion of sequentially Cohen-Macaulay modules was introduced by Stanley [St] for
the graded case, and it was studied for the local case in [Sch], [CN]. Also notice that
a special type of sequentially Cohen-Macaulay rings called approximately Cohen-
Macaulay rings was studied very early by Goto [G].

3. Proof of Theorem 1.1

The following result is an immediate consequence of the definition of a good
system of parameters in a sequentially Cohen-Macaulay module.

Lemma 3.1. Let x = x1, . . . , xd be a good system of parameters of a sequentially
Cohen-Macaulay module M and q = (x1, . . . , xd). Then

q
nM ∩ Di = q

nDi

for all n ≥ 1 and 0 ≤ i ≤ t − 1.
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Proof. Since Di+1/Di is a Cohen-Macaulay module with dim Di+1/Di = di+1 >
di = dimDi and qDi+1 = (x1, . . . , xdi+1)Di+1 for 0 ≤ i ≤ t − 1, it follows from
well-known facts in commutative algebra that

q
nDi+1 ∩ Di = q

nDi.

Therefore
q

nM ∩ Di = (qnDt ∩ Dt−1) ∩ Di = q
nDt−1 ∩ Di

. . . = q
nDi+1 ∩ Di = q

nDi

for all n ≥ 1 and 0 ≤ i ≤ t − 1 as required. �

Let s be a positive integer and y1, . . . , ys ∈ m. For each 1 � i � s and α =
(α1, . . . , αi) ∈ Λi,n, we set Qi = (y1, . . . , yi)R, Q = (y1, . . . , ys)R and Qi(α) =
(yα1

1 , . . . , yαi
i ), Q(α) = (yα1

1 , . . . , yαs
s ). The following result is due to Heinzer-Ratliff-

Shah [HRS, Theorem 2.4]. But we give here the module version of this result proved
by Goto-Shimoda [GS2, Lemma 2.1].

Lemma 3.2. Let s be a positive integer and y1, . . . , ys an M -regular sequence.
Then

QnM =
⋂

α∈Λs,n

Q(α)M

for all n � 1.

Because the techniques and methods of proof of Theorem 1.1 heavily depend on
the works of Goto-Shimoda [GS1] and [GS2], let us summarize the auxiliary results
in [GS1] into the following.

Lemma 3.3. With the notation as above the following assertions hold true:
(i) Let y ∈ R and assume that 0 :M y� ⊆ yM for all � � 1. Then y is a

non-zerodivisor on M .
(ii) Suppose that QnM =

⋂
α∈Λs,n

Q(α)M for all n � 1. Then

Qs−1M : y�
s ⊆ QM + (0 :M y�

s)

for all � � 1.
(iii) Suppose that QnM =

⋂
α∈Λs,n

Q(α)M for all n � 1. Then

Qn
i M =

⋂
α∈Λi,n

Qi(α)M

for all 1 � i � s and � � 1.

In the above lemma, the key is assertion (ii), which is given in the proof of
Lemma 3.2 in [GS1]. By this lemma one gets the following.

Lemma 3.4. Suppose that (1) QnM =
⋂

α∈Λs,n

Q(α)M for all n ≥ 1 and that

(2) 0 :M y�
i = 0 :M yi for all 1 ≤ i ≤ s and � ≥ 1. Then for all integers

1 ≤ i ≤ j ≤ s, the element yj is a non-zerodivisor on M/[Qi−1M + (0 :M yj)], so
that one has the equality

Qi−1M : y2
j = Qi−1M + (0 :M yj).
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Proof. Since conditions (1) and (2) are independent of the order of y1, . . . , ys, we
may assume that i = j. Then we have

Qi−1M : y�
i ⊆ QiM + (0 :M yi)

for all � � 1, thanks to (ii) and (iii) of Lemma 3.3. Let L = M/[Qi−1M + 0 :M yi]
and let α ∈ M be such that y�

i α = 0 in L with � � 1, where α denotes the image
of α in L. Then y�+1

i α ∈ Qi−1M , so that α ∈ Qi−1M : y�+1
i ⊆ QiM + (0 :M yi).

Hence α ∈ yiL, which shows, by (i) of Lemma 3.3, that yi is a non-zerodivisor on
L. Then the second conclusion is now clear. �

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. (i)⇒(ii). Let x = x1, . . . , xd be a good system of parameters
of M and q = (x1, . . . , xd). We prove by induction on the length t of the dimension
filtration D of M that x has the property of parametric decomposition. The case t =
0 is trivial. Let t ≥ 1. Set M = M/Dt−1. Since M is a Cohen-Macaulay module,
the sequence x1, . . . , xd is M -regular. Then qnM =

⋂
α∈Λd,n

q(α)M by Lemma 3.2.

Therefore
⋂

α∈Λd,n

q(α)M ⊆ qnM + Dt−1. Since xα1
1 , . . . , xαd

d is a good system of

parameters of M for each α ∈ Λd,n, it follows from Lemma 3.1 that q(α)M∩Dt−1 =
(xα1

1 , xα2
2 , . . . , x

αdt−1
dt−1

)Dt−1. Now, applying the inductive hypothesis on Dt−1 we can
show with the same method that was used in the proof of Proposition 2.2 of [GS2]
that

⋂
α∈Λd,n

q(α)M = qnM .

(ii)⇒(iii) is obvious.
(iii)⇒(i). Let x = x1, . . . , xd be a good system of parameters of M having

the property of parametric decomposition and q = (x1, . . . , xd). Since 0 :M xl
i =

0 :M xi for all l ≥ 1 and 1 ≤ i ≤ d by Lemma 2.1, we get by Lemma 3.4 that
qiM : x2

j = qiM +(0 :M xj) for all 1 ≤ i ≤ j ≤ d. Therefore the implication follows
by Theorem 3.9 of [CC], and the proof of Theorem 1.1 is complete. �

Proof of Corollary 1.2. (i)⇒(ii). It is easy to see from the hypothesis that M is a
sequentially Cohen-Macaulay module with the dimension filtration D : H0

m(M) ⊂
M . Moreover, by Lemma 3.1 we have

(x1, . . . , xd)M ∩ H0
m(M) = (x1, . . . , xd)H0

m(M) ⊆ mH0
m(M) = 0

for any system of parameters x1, . . . , xd of M . This means that every system of
parameters of M is good; therefore it has the property of parametric decomposition
by Theorem 1.1.

(ii)⇒(i). First, it follows by Theorem 1.1 that M is sequentially Cohen-Macaulay.
Remember by the definition of the dimension filtration of M that D0 = H0

m(M)
and dimDi > 0 for all i > 0. Therefore the implication is proved if we can show
that mDt−1 = 0. Suppose the contrary. Then there is an element x1 ∈ m so that
x1Dt−1 �= 0 and dimM/x1M = d−1. Since d � 2, we can choose x2 ∈ m such that
x2Dt−1 = 0 and dimM/(x1, x2)M = d − 2. We observe that the sequence x1, x2

and x1, x1 + x2 are part of systems of parameters of M . Therefore

(x2
1, x1 + x2)M ∩ (x1, (x1 + x2)2)M = (x1, x2)2M = (x2

1, x2)M ∩ (x1, x
2
2)M.
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Since M/Dt−1 is Cohen-Macaulay, it follows from Lemma 3.1 that

x1Dt−1 = (x2
1, x1 + x2)Dt−1 ∩ (x1, (x1 + x2)2)Dt−1

= (x2
1, x2)Dt−1 ∩ (x1, x

2
2)Dt−1 = x2

1Dt−1.

Thus x1Dt−1 = 0 by Nakayama’s lemma, which is impossible. Hence mDt−1 =
0. �

4. Hilbert-Samuel polynomials

A parameter ideal q is called a good parameter ideal if it is generated by a good
system of parameters. Then, in this section we shall show that for a sequentially
Cohen-Macaulay M the Hilbert-Samuel function Hq,M (n) = �(M/qn+1M) has a
special expression with non-negative coefficients, which can be computed by the
dimension filtration, and this function coincides with the Hilbert-Samuel polyno-
mial Pq,M (n) for any good parameter ideal q of M and all n � 1. Moreover, the
sequentially Cohen-Macaulayness of M can be characterized by this expression of
the Hilbert-Samuel function.

Theorem 4.1. Let D : D0 ⊂ D1 ⊂ . . . ⊂ Dt = M be the dimension filtration of M
and set Di = Di/Di−1 for all 1 ≤ i ≤ t, D0 = D0. Then the following statements
are equivalent:

(i) M is a sequentially Cohen-Macaulay module.
(ii) For any good parameter ideal q of M , it holds that

�(M/q
n+1M) =

t∑
i=0

(
n + di

di

)
�(Di/qDi)

for all n � 0.
(iii) There exists a good parameter ideal q of M such that

�(M/q
n+1M) =

t∑
i=0

(
n + di

di

)
�(Di/qDi)

for all n � 0.

Proof. (i)⇒(ii). We argue by the induction on the length t of the dimension fil-
tration D of M . The case t = 0 is obvious. Assume that t > 0. By virtue of
Lemma 3.1, we have a short exact sequence

0 → Dt−1/q
n+1Dt−1 → M/q

n+1M → M/q
n+1M + Dt−1 → 0.

Therefore, we have �(M/qn+1M) = �(Dt−1/qn+1Dt−1)+�(Dt/qn+1Dt). Since Dt−1

is a sequentially Cohen-Macaulay module and its dimension filtration is of length
t − 1, it follows from the inductive hypothesis that

�(Dt−1/q
n+1Dt−1) =

t−1∑
i=0

(
n + di

di

)
�(Di/qDi).

Notice that Dt is Cohen-Macaulay of dimension d = dt, so we have

�(Dt/q
n+1Dt) =

(
n + d

d

)
�(Dt/qDt).
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Hence

�(M/q
n+1M) =

t∑
i=0

(
n + di

di

)
�(Di/qDi),

for all n � 0.
(ii)⇒(iii) is trivial.
(iii)⇒(i). Since the following sequence is exact:

Dt−1/q
n+1Dt−1 → M/q

n+1M → M/q
n+1M + Dt−1 → 0,

we get �(M/qn+1M) � �(Dt−1/qn+1Dt−1)+�(Dt/qn+1Dt). Therefore, by induction
on the length of the dimension filtration we can show that

�(M/q
n+1M) �

t∑
i=0

�(Di/q
n+1Di).

On the other hand, since

�(Di/q
n+1Di) �

(
n + di

di

)
�(Di/qDi)

for all 0 ≤ i ≤ t, it follows from the hypothesis that

�(M/q
n+1M) =

t∑
i=0

�(Di/q
n+1Di) =

t∑
i=0

(
n + di

di

)
�(Di/qDi).

Therefore �(Di/qn+1Di) =
(
n+di

di

)
�(Di/qDi) for all n ≥ 0 and 0 ≤ i ≤ t. Thus Di is

Cohen-Macaulay for all 0 ≤ i ≤ t, and this completes the proof. �
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Boston, 1996. MR1453579 (98h:05001)

Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Viet Nam

E-mail address: ntcuong@math.ac.vn

Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Viet Nam

E-mail address: hltruong@math.ac.vn

http://www.ams.org/mathscinet-getitem?mr=1702109
http://www.ams.org/mathscinet-getitem?mr=1702109
http://www.ams.org/mathscinet-getitem?mr=1453579
http://www.ams.org/mathscinet-getitem?mr=1453579

	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	4. Hilbert-Samuel polynomials
	Acknowledgment
	References

