ON CLOSED δ-PINCHED MANIFOLDS WITH DISCRETE ABELIAN GROUP ACTIONS

YUSHENG WANG

(Communicated by Alexander N. Dranishnikov)

Abstract. Let M^n be a closed odd n-manifold with sectional curvature $\delta < \sec_M \leq 1$, and let M admit an effective isometric \mathbb{Z}_p^k-action with p prime. The main results in the paper are: (1) if $\delta > 0$ and $n \geq 5$, then there exists a constant $p(n, \delta)$, depending only on n and δ, such that $p \geq p(n, \delta)$ implies that (i) $k \leq \frac{n+1}{2}$, (ii) the universal covering space of M is homeomorphic to S^n if $k > \frac{3}{8}n + 1$, (iii) the fundamental group $\pi_1(M)$ is cyclic if $k > \frac{n+1}{4} + 1$; (2) if $\delta = 0$ and $n = 3$, then $k \leq 4$ for $p = 2$ and $k \leq 2$ for $p \geq 3$, and $\pi_1(M)$ is cyclic if $p \geq 5$ and $k = 2$.

0. Introduction

In the past decade, the closed positively curved n-manifold, M^n, with symmetry has been researched. Much investigation focuses on the case that M^n admits an effective isometric torus T^k-action with k large ([8], [3], [5], [13]–[16], [18]). In this field, the original work is by Grove and Searle [8], and a dramatic improvement after it is the work by Wilking [18]. Roughly, their work shows that the manifold M is constrained to have the cohomology of a symmetry space if k is large enough. (The present paper was inspired by and coincides with this line.) A natural step is to further replace the T^k-action by a disconnected group action. Fang and Rong [4] studied M^n which admits an effective isometric \mathbb{Z}_p^k-action or a $T^1 \oplus \mathbb{Z}_p^k$-action with p prime for n even or odd respectively, where $p \geq p(n)$, a constant depending only on n. A natural problem [4] is: to research M^n with n odd which admits an effective isometric \mathbb{Z}_p^k-action.

Due to the problem above, the present paper obtains the following result.

Theorem A. Let M^n be a closed odd n-manifold with sectional curvature $0 < \delta < \sec_M \leq 1$ and $n \geq 5$. Suppose M admits an effective isometric \mathbb{Z}_p^k-action. Then there exists a constant $p(n, \delta)$, depending only on n and δ, such that $p \geq p(n, \delta)$ implies:

1. $k \leq \frac{n+1}{2}$.
2. The universal covering space of M is homeomorphic to S^n if $k > \frac{3}{8}n + 1$.
3. The fundamental group $\pi_1(M)$ is cyclic if $k > \frac{n+1}{4} + 1$.

Received by the editors December 20, 2006, and, in revised form, December 12, 2007.
2000 Mathematics Subject Classification. Primary 53C20.
Key words and phrases. δ-pinched manifold, group action, fundamental group.
The author was supported in part by NSFC Grant #10671018.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
When \(n \geq 5 \), it is easy to check that ‘\(k = \frac{n+1}{2} \)’ implies ‘\(k > \frac{3}{8}n + 1 \)’, and that ‘\(k > \frac{3}{8}n + 1 \)’ implies ‘\(k > \frac{n+1}{4} + 1 \)’. Thus if \(k = \frac{n+1}{2} \), or if \(k > \frac{3}{8}n + 1 \) in Theorem A, then \(M \) is homeomorphic to \(S^n/\mathbb{Z}_h \) (but we cannot make sure whether \(Z_h \) is conjugate to a linear action).

Remark 0.2. Theorem A was originally inspired by the results in [8] and [4]. Let \(\omega \) be a closed \(n \)-manifold of positive sectional curvature. The main result in [8] asserts that if \(M^n \) admits an effective isometric torus \(T^k \)-action, then \(k \leq \left\lfloor \frac{n+1}{2} \right\rfloor \) and ‘=’ implies that \(M \) is diffeomorphic to a sphere, a lens space or a complex projective space. The main results in [4] are: there exists a constant \(p(n) \), depending only on \(n \), such that if a simply connected \(M^n \) admits an effective isometric \(\mathbb{Z}_p^k \)-action or \(T^1 \oplus \mathbb{Z}_p^k \)-action with prime \(p \geq p(n) \) for \(n = 2m \) or \(2m + 1 \) respectively, then \(k \leq m \); and if \(k = m \) in addition or if \(m \geq 7 \) and \(k \geq \left\lceil \frac{3m}{2} \right\rceil + 2 \), then \(M \) is homeomorphic to a sphere or a complex projective space.

When \(n = 3 \), we get the following result (mainly due to the Hamilton’s work. See Theorem 5.1 below).

Theorem B. Let \(M^3 \) be a closed \(3 \)-manifold of positive sectional curvature. If \(M \) admits an effective isometric \(\mathbb{Z}_p^k \)-action with \(p \) prime, then \(k \leq 4 \) for \(q = 2 \) and \(k \leq 2 \) for \(q \geq 3 \). In addition, \(\pi_1(M) \) is cyclic if \(q \geq 5 \) and \(k = 2 \).

Remark 0.3. In Theorem B, ‘\(q \geq 5 \) and \(k = 2 \)’ is optimal for ‘\(\pi_1(M) \) is cyclic’. One can check that space forms \(S^3/D_q^k \) and \(S^3/T^k \) admit effective isometric \(T^1 \oplus \mathbb{Z}_3 \)- and \(T^1 \oplus \mathbb{Z}_2 \)-actions respectively (ref. [12]), where \(D_q^k \) and \(T^k \) are groups in the proof of the lemma in the Appendix.

The rest of the paper is organized as follows:

In Section 1, we show the choice of \(p(n, \delta) \) in Theorem A.

In Sections 2-4, we will prove parts 1-3 of Theorem A respectively.

In Section 5, we will give the proof of Theorem B.

1. **The choice of \(p(n, \delta) \) in Theorem A**

The choice of \(p(n, \delta) \) in Theorem A is due to the following two results.

Theorem 1.1 [14]. Let \(M^n \) be a closed \(n \)-manifold with sectional curvature \(0 < \delta < \sec_M \leq 1 \). Then \(\pi_1(M) \) has a finite normal cyclic subgroup with index less than \(\omega(n, \delta) \), a constant depending only on \(n \) and \(\delta \).

Remark 1.2. X. Rong supplied a conjecture [14]: Let \(M^n \) be a closed \(n \)-manifold of positive sectional curvature. Then \(\pi_1(M) \) has a finite normal cyclic subgroup with index less than \(\omega(n) \), a constant depending only on \(n \). It should be pointed out that, according to the proofs of the present paper, the conclusions in Theorem A will hold for manifolds of positive sectional curvature (i.e., \(\delta = 0 \)) once the conjecture is verified.

Theorem 1.3 [7]. Let \(M^n \) be a closed \(n \)-manifold with non-negative sectional curvature. Then the total Betti number of \(M \), with respect to any coefficient field, is less than \(c(n) \), a constant depending only on \(n \).

Assertion. We choose the constant \(p(n, \delta) \) in Theorem A satisfying that \(p(n, \delta) \geq \max\{\omega(n, \delta), c(n)\} \) and \(p(n + 1, \delta) \geq p(n, \delta) > 2 \).
Remark 1.4. Weinstein’s theorem [2] asserts that a closed positively curved manifold \(M \) of odd dimension is orientable. Thus if \(\mathbb{Z}_p^l \) acts isometrically on \(M \) with prime \(p > 2 \), then \(\mathbb{Z}_p^l \) preserves the orientation of \(M \). In addition, if \(\mathbb{Z}_p^l \) has a non-empty fixed point set, which is totally geodesic, then it is of even codimension.

2. The proof of Part 1 of Theorem A

Lemma 2.1. Let \(M^n \) be a closed \(n \)-manifold with sectional curvature \(0 < \delta \leq \sec M \leq 1 \). Then the \(\mathbb{Z}_p^2 \) group with prime \(p \geq p(n, \delta) \) cannot act on \(M \) freely and isometrically.

Proof. We argue by contradiction. Assume that \(\mathbb{Z}_p^2 \) acts on \(M \) freely and isometrically. Note that \(M = M/\mathbb{Z}_p^2 \) is also a Riemannian manifold with \(\delta < \sec M \leq 1 \). Let \(\pi : \tilde{M} \to M \) be the universal covering map. Then \(\tilde{M} = \tilde{M}/\pi_1(\tilde{M}) \), and there is the following exact sequence [1, p. 66]:

\[
0 \to \pi_1(M) \to \pi_1(\tilde{M}) \xrightarrow{f} \mathbb{Z}_p \oplus \mathbb{Z}_p \to 0.
\]

Note that we can assume \(\pi_1(\tilde{M}) = \langle \pi_1(M), \alpha, \beta \rangle \) with \(f(\alpha) \) and \(f(\beta) \) being generators of \(\mathbb{Z}_p \oplus \mathbb{Z}_p \). According to the choice of \(p(n, \delta) \) and Theorem 1.1, \(\pi_1(M) \) contains a normal cyclic subgroup, say \(\langle \gamma \rangle \), such that \([\pi_1(M) : \langle \gamma \rangle] < p \). Then \(\langle \alpha^h, \beta^j \rangle \in \langle \gamma \rangle \) for some \(h, j \geq 0 \) such that \(0 < h < p \) and \(0 < j < p \), so \(\langle \alpha^h, \beta^j \rangle \) is a cyclic subgroup. Hence

\[
\langle f(\alpha^h), f(\beta^j) \rangle = \langle (f(\alpha))^h, (f(\beta))^j \rangle = \langle f(\alpha), f(\beta) \rangle \cong \mathbb{Z}_p \oplus \mathbb{Z}_p
\]
is a cyclic group, a contradiction. \(\square \)

Remark 2.2. Using Lemma 2.1, we can get that \(\mathbb{Z}_p^k \) with \(p \geq p(n, \delta) \) has an isotropy subgroup of rank \(k-1 \) if \(M \) admits an effective isometric \(\mathbb{Z}_p^k \) action (see the following proof). According to [1], parts 1 and 2 of Theorem A can be derived from the proofs in [1] if \(M \) is simply connected.

Proof of Part 1 of Theorem A. By Lemma 2.1, \(\mathbb{Z}_p^k \) cannot act freely on \(M \) for \(k \geq 2 \), i.e., we can find an isotropy subgroup \(\mathbb{Z}_p^l \) with \(l \geq 1 \). Take a component \(N \) of \(F(\mathbb{Z}_p^l, M) \), the fixed point set of \(\mathbb{Z}_p^l \).

Claim. \(N = F(\mathbb{Z}_p^l, M) \). Note that \(\alpha(N) \) is also a component of \(F(\mathbb{Z}_p^l, M) \) for any \(\alpha \in \mathbb{Z}_p^l \). If the claim is not true, then \(F(\mathbb{Z}_p^l, M) \) contains at least \(p \) components and thus \(\sum_{i=0}^n \text{rank}(H_i(F(\mathbb{Z}_p^l, M); \mathbb{Z}_p)) \geq 2p \). On the other hand, by Theorem 2.3 below and Theorem 1.3

\[
\sum_{i=0}^n \text{rank}(H_i(F(\mathbb{Z}_p^l, M); \mathbb{Z}_p)) \leq \sum_{i=0}^n \text{rank}(H_i(M; \mathbb{Z}_p)) \leq p.
\]

Thus we get a contradiction.

By Remark 1.4, \(N \) is a totally geodesic submanifold of even codimension. Consider the induced action \(\mathbb{Z}_p^k|_N = \mathbb{Z}_p^k/\mathbb{Z}_p^l \cong \mathbb{Z}_p^{k-1} \) on \(N \). Repeating the process above, we can find \(\mathbb{Z}_p^{k-1} \)-fixed point component \(N_0 \) of codimension \(2m \).

Note that \(\mathbb{Z}_p^{k-1} \) can act on the normal space of \(N_0 \) as a subgroup of \(SO(2m) \). Then \(2m \geq 2(k-1) \), i.e., \(k \leq m + 1 \leq \frac{n-1}{2} + 1 = \frac{n+1}{2} \).

\(\square \)

Theorem 2.3 [1 p. 163]. Let the group \(G \cong \mathbb{Z}_q \) with \(q \) prime act on a closed \(n \)-manifold \(M^n \). Then \(\sum_{i=0}^n \text{rank}(H_i(F(G, M); \mathbb{Z}_q)) \leq \sum_{i=0}^n \text{rank}(H_i(M; \mathbb{Z}_q)) \).
We will use the following connectedness theorem by B. Wilking.

Theorem 3.1 [8]. Let N^n be a closed n-manifold of positive sectional curvature, and let $L^j \subset N^n$ be a closed totally geodesic embedded submanifold. Then the inclusion map $L^j \hookrightarrow N^n$ is $(2l - n + 1)$-connected.

Remark 3.2. We say that the inclusion map $L \hookrightarrow N$ is i-connected if the homotopy groups $\pi_j(N, L) = 0$ for $0 \leq j \leq i$. Then $\pi_i(N) \cong \pi_i(L)$ if $i \geq 2$, and $H_j(N, L; \mathbb{Z}) = 0$ for $0 \leq j \leq i$ (the Hurewicz theorem).

Corollary 3.3 [8]. Let N^n and L^j be the manifolds in Theorem 3.1. If n is odd and $l = n - 2$, then the universal covering space of N is an integer homology sphere.

Remark 3.4. In Theorem A, to prove that the universal covering space of M, \tilde{M} is homeomorphic to S^n, one only needs to verify that \tilde{M} is an integer homology sphere ([5], [17]).

Proof of Part 2 of Theorem A. By Remark 2.2, there is a \mathbb{Z}_p^{k-1}-fixed point component N_0. Analyzing the representation of \mathbb{Z}_p^{k-1} on the normal space of N_0, we can take a \mathbb{Z}_p-fixed point component N such that the effective part of $\mathbb{Z}_p^{k-1}|N$ is isomorphic to a \mathbb{Z}_p^{k-1}-group.

If $5 \leq n \leq 11$, then $k > \frac{3}{2}n + 1$ implies $k = \frac{n+1}{2}$ (see part 1 of Theorem A), and thus $\dim(N) = n - 2$. Hence the universal covering space of M is homeomorphic to S^n by Corollary 3.3 (see Remark 3.4).

Assume that $n \geq 13$. It is not hard to check that $\dim(N) \geq \frac{3}{2}(n - 1)$ by part 1 of Theorem A (note that n is odd). Then the inclusion map $i : N \hookrightarrow M$ is at least $\frac{n-1}{2}$-connected by Theorem 3.1, so $i_*(\pi_1(N)) = \pi_1(M)$ (see Remark 3.2). Let $\pi : \tilde{M} \to M$ be the universal covering map. Then $\pi^{-1}(N)$ is simply connected, and so $i : \pi^{-1}(N) \hookrightarrow \tilde{M}$ is also $\frac{n-1}{2}$-connected.

On the other hand, we can assume $\dim(N) \leq n - 4$ by Corollary 3.3; then the effective \mathbb{Z}_p^{k-1}-action on N satisfies $k - 1 > \frac{3}{2}\dim(N) + 1$. By induction we can assume that $\pi^{-1}(N)$, the universal covering space of N, is homeomorphic to a sphere. Then \tilde{M} is an integer homology sphere because $i : \pi^{-1}(N) \hookrightarrow \tilde{M}$ is $\frac{n-1}{2}$-connected (see Remark 3.2). Hence \tilde{M} is homeomorphic to S^n indeed by Remark 3.4.

4. The proof of Part 3 of Theorem A

In the proof of Part 3 of Theorem A, we will use:

Lemma 4.1 [5]. Let N^n ($n \geq 5$) be a closed positively curved n-manifold, and let L be a closed totally geodesic embedded submanifold of codimension 2. Then $\pi_1(N)$ is cyclic.

Proof of Part 3 of Theorem A. As the proof of Part 2 of Theorem A, take a \mathbb{Z}_p-fixed point component N which admits an effective \mathbb{Z}_p^{k-1}-action.

When $n = 5$ and 7, $k > \frac{4n+1}{4}$ implies $k = \frac{4n+1}{4}$. Then as in the proof of Part 2 of Theorem A, $\dim(N) = n - 2$, so $\pi_1(M)$ is cyclic by Lemma 4.1.

Assume that $n \geq 9$. One can check that $\dim(N) \geq \frac{4n+1}{4}$ by Part 1 of Theorem A. Then the inclusion map $i : N \hookrightarrow M$ is at least 2-connected by Theorem 3.1, so $i_*(\pi_1(N)) = \pi_1(M)$ (see Remark 3.2). On the other hand, we can assume
dim(N) ≤ n − 4 by Lemma 4.1; then the effective \(\mathbb{Z}_p^{k-1} \)-action on \(N \) satisfies \(k - 1 > \frac{\dim(N)+1}{2} + 1 \). By induction we can get that \(\pi_1(N) \) is cyclic, so \(\pi_1(M) \) is cyclic because \(\pi_1(N) \cong \pi_1(M) \).

\[\Box \]

5. The Proof of Theorem B

In this section, the following remarkable result by R. Hamilton will be a basis.

Theorem 5.1 \(\square \). Let \(M^3 \) be a closed 3-manifold of positive sectional curvature. If a group \(G \) acts isometrically on \(M \), then \(M \) admits a metric of positive constant sectional curvature for which \(G \) acts isometrically.

Using Theorem 5.1, we give the following lemma.

Lemma 5.2. Let \(M^3 \) be a closed 3-manifold of positive sectional curvature. If the isometry group of \(M \), \(\text{Iso}(M) \), contains a \(\mathbb{Z}_q^k \) subgroup with \(q \) prime, then \(k \leq 4 \) for \(q = 2 \) and \(k \leq 2 \) for \(q \geq 3 \).

Proof. We first prove that \(k \leq 2 \) for \(q \geq 3 \). We claim that \(\mathbb{Z}_q^2 \) cannot act freely on \(M \). Assuming the claim, we will prove that \(k \leq 2 \). Note that we can assume \(k \geq 2 \). By the claim, we can find \(e \neq \alpha \in \mathbb{Z}_q^k \) such that \(\alpha \) has a non-empty fixed point set and that \(\dim(F(\alpha, M)) = 1 \) (see Remark 1.4). Note that \(M \) is a positive 3-space form by Theorem 5.1; then by Theorem 2.3 and the lemma in the Appendix,

\[
\sum_{i=0}^{1} \text{rank}(H_i(F(\alpha, M); \mathbb{Z}_q)) \leq \sum_{i=0}^{3} \text{rank}(H_i(M; \mathbb{Z}_q)) \leq 4.
\]

Thus \(F(\alpha, M) \) contains at most 2 components; then \(\mathbb{Z}_q^k \) preserves each component of \(F(\alpha, M) \). That is, the isotropy group of \(O \), a component of \(F(\alpha, M) \), contains a \(\mathbb{Z}_q^{k-1} \) subgroup. Therefore \(k \leq 2 \) because \(\mathbb{Z}_q^{k-1} \) can act faithfully on the normal space of \(O \) (note that \(O \) is of codimension 2).

Now we prove the above claim. Assume that \(\mathbb{Z}_q^2 \) acts freely on \(M \). Note that \(M/\mathbb{Z}_q^2 \) is a 3-manifold of positive sectional curvature, and thus it is also a positive 3-space form by Theorem 5.1. Because \(\pi_1(M/\mathbb{Z}_q^2)/\pi_1(M) \cong \mathbb{Z}_q^2 \), \(H_1(M/\mathbb{Z}_q^2; \mathbb{Z}) \) contains a \(\mathbb{Z}_q^3 \) subgroup (recall that \(H_1(M/\mathbb{Z}_q^2; \mathbb{Z}) \cong \pi_1(M/\mathbb{Z}_q^2)/C \), where \(C \) is the commutator subgroup of \(\pi_1(M/\mathbb{Z}_q^2) \)). This is a contradiction to the lemma in the Appendix.

The proof for \(q = 2 \) is similar to the above (the difference is that there exists a \(\mathbb{Z}_3^k \) subgroup (note that we can assume that \(k \geq 4 \)) which preserves the orientation of \(M \) such that it cannot act freely on \(M \). \[\Box \]

Next we will give Lemma 5.3. Note that Lemmas 5.2 and 5.3 together imply Theorem B.

Lemma 5.3. Let \(M^3 \) be a closed 3-manifold of positive sectional curvature. If \(\text{Iso}(M) \) contains a \(\mathbb{Z}_q^2 \) subgroup with prime \(q \geq 5 \), then \(\pi_1(M) \) is cyclic.

Before proving Lemma 5.3, we first observe the following lemma.

Lemma 5.4. Let \(M^3 \) be a closed 3-manifold of positive sectional curvature. If \(\text{Iso}(M) \) contains a \(\mathbb{Z}_q^2 \) subgroup with prime \(q \geq 5 \), then \(\text{Iso}(M) \) contains a \(T^1 \oplus \mathbb{Z}_q \) subgroup, and \(\mathbb{Z}_q \) preserves every exceptional \(T^1 \)-orbit.
Proof. We first prove that \(\text{Iso}(M) \) contains a \(T^1 \oplus \mathbb{Z}_q \) subgroup. According to p. 108 in [12], \(k = \text{rank}(\text{Iso}(M)) \geq 1 \); i.e., \(\text{Iso}(M) \) contains a torus \(T^k \) subgroup with \(k \geq 1 \), because \(M \) is a space form of positive constant sectional curvature by Theorem 5.1. If \(\text{rank}(\text{Iso}(M)) \geq 2 \), the conclusion is obvious. If \(\text{rank}(\text{Iso}(M)) = 1 \), recall that the identity component \(\text{Iso}_0(M) \) of \(\text{Iso}(M) \) is \(T^1 \), or \(\text{SO}(3) \), or \(\text{SU}(2) \).

Endow \(\text{Iso}(M) \) with a bi-invariant metric. Then the conjugate map

\[
\text{Iso}(M) \times \text{Iso}_0(M) \rightarrow \text{Iso}_0(M), (g, g_0) \mapsto g g_0 g^{-1}
\]

induces an \(\text{Iso}(M) \subset O(n) \) action on \(T_e(\text{Iso}_0(M)) \), the tangent space at \(e \), where \(n = \text{dim}(\text{Iso}(M)) \). Note that \(n = 1 \) or 3; then the \(\mathbb{Z}_q^2 \subset \text{Iso}(M) \subset O(n) \) action on \(\mathbb{R}^n \) has a non-empty fixed point set. Take a line \(tX \) fixed by \(\mathbb{Z}_q^2 \), where \(X \in T_e(\text{Iso}_0(M)) \). The subgroup \(\exp(tX) \), the closure of \(\exp(tX) \), commutes with the subgroup \(\mathbb{Z}_q^2 \subset \text{Iso}(M) \), where \(\exp : T_e(\text{Iso}_0(M)) \rightarrow \text{Iso}_0(M) \) is the exceptional map. Note that \(\exp(tX) \) contains a \(T^1 \)-subgroup; i.e., we find a \(T^1 \oplus \mathbb{Z}_q \) subgroup.

Assume that there is \(Z_r \subset T^1 \) with \(r \) prime such that \(F(Z_r, M) \neq \emptyset \). Note that \(T^1 \) preserves the orientation of \(M \); then \(\text{dim}(F(Z_r, M)) = 1 \) (see Remark 1.4). By Theorem 2.3 and the lemma in the Appendix

\[
\sum_{i=0}^{1} \text{rank}(H_i(F(Z_r, M); \mathbb{Z}_r)) \leq \sum_{i=0}^{3} \text{rank}(H_i(M; \mathbb{Z}_r)) \leq 6.
\]

Thus \(F(Z_r, M) \) contains at most 3 components. Therefore if \(q \geq 5 \), then the \(\mathbb{Z}_q \) in \(T^1 \oplus \mathbb{Z}_q \) preserves every component of \(F(Z_r, M) \) (note that \(\mathbb{Z}_q \) preserves \(F(Z_r, M) \)).

In the rest, we will only need to give the proof of Lemma 5.3, in which the following results will be used.

Lemma 5.5 [5]. Let \(M \) be a closed Riemannian manifold on which \(T^1 \) acts isometrically. If there is an isometry \(\phi \) on \(M^* \), then \(\chi(F(\phi, M^*)) = \text{Lef}(\phi; M^*) \), where \(M^* = M/T^1 \).

Recall that the Lefschetz number \(\text{Lef}(\phi; M^*) = \sum_i (-1)^i \text{trace}(\phi_*^i) \), where \(\text{trace}(\phi_*^i) \) is the trace of the induced map by \(\phi \) on \(H_i(M^*; \mathbb{Q}) \). Lemma 5.5 generalizes the result ([10], p. 63): any isometry \(\phi \) on a closed Riemannian manifold \(M \) satisfies \(\chi(F(\phi, M)) = \text{Lef}(\phi; M) \).

Lemma 5.6 [8]. Let \(M \) be a closed manifold of positive sectional curvature on which \(T^1 \) acts isometrically. If \(T^1 \) has fixed point set of codimension 2, then \(\pi_1(M) \) is cyclic.

Note that Lemma 4.1 is an extending version of Lemma 5.6.

Lemma 5.7 [1] p. 91. Let \(G \) be a connected compact Lie group, and let \(X \) be an arcwise connected \(G \)-space. Then the projectional map \(p : X \rightarrow X/G \) induces an onto map on fundamental groups.

Proof of Lemma 5.3. By Lemma 5.4, \(\text{Iso}(M) \) contains a \(T^1 \oplus \mathbb{Z}_q \) subgroup, and \(\mathbb{Z}_q \) preserves every exceptional \(T^1 \)-orbit.

Claim. we can assume that \(M^* \) is homeomorphic to \(S^2 \), where \(M^* = M/T^1 \). Let \(\alpha \) be the generator of \(\mathbb{Z}_q \), and let \(\hat{\alpha} \) denote the induced action by \(\alpha \) on \(M^* \). Assuming the claim, by Lemma 5.5 we can get

\[
\chi(F(\hat{\alpha}, M^*)) = \text{Lef}(\hat{\alpha}; M^*) = 2
\]
(note that \(\alpha\) preserves the orientation of \(M\). See Remark 1.4). Then \(F(\hat{\alpha}, M^*)\) is \(M^*\) or two points. If \(F(\hat{\alpha}, M^*) = M^*\), then \(\alpha\) preserves every \(T^1\)-orbit on \(M\), and thus \(T^1 \oplus \mathbb{Z}_2\)-action is not effective, a contradiction. Then \(F(\hat{\alpha}, M^*)\) contains only two points. In other words, \(\alpha\) preserves only two \(T^1\)-orbits on \(M\). Since \(\alpha\) preserves every exceptional \(T^1\)-orbit on \(M\), there are at most two exceptional orbits on \(M\); i.e., \(M^*\) contains at most two singular points. Hence \(M\) is a gluing of two solid tori, so \(M\) is homeomorphic to a lens space, and thus \(\pi_1(M)\) is cyclic.

Next we will prove the claim above. By Lemma 5.6, we can assume that the \(T^1\)-action on \(M\) has an empty fixed point set. Then \(M^*\) is an orientable manifold of dimension 2. On the other hand, \(\pi_1(M^*)\) is finite by Lemma 5.7. According to the classification of closed orientable surfaces, \(M^*\) is homeomorphic to \(S^2\).

\[\square\]

Appendix

Lemma. Let \(M^3\) be a positive 3-space form. Then its first homology group \(H_1(M; \mathbb{Z})\) \(\cong 0\), or \(\mathbb{Z}_h\) with \(h \geq 2\), or \(\mathbb{Z}_2 \oplus \mathbb{Z}_l\) with \(l\) odd.

Proof. According to p. 111 in [12] (cf. [11]), \(\pi_1(M)\) is one group of the following list: \(C_m, D^*_4, D^*_{2\times(2n+1)}, T^*, T^*_{S, 3k}, O, I^*\) and the direct product of any of these groups with a cyclic group of relatively prime order. In this list,

- \(C_m\) is a cyclic group of order \(m\),
- \(D^*_{4m} = \{x, y | x^2 = (xy)^2 = y^m\}\),
- \(T^*, O, I^* = \{x, y | x^2 = (xy)^2 = y^n, x = 1\}\) for \(n = 3, 4, 5\) respectively,
- \(D^*_{2\times(2n+1)} = \{x, y | x^2 = 1, y^{2n+1} = 1, y = y^{-1}x\}\) with \(k \geq 2\) and \(m \geq 1, k \geq 1\),
- \(T^*_{3k} = \{x, y | x^2 = (xy)^3 = y^2, yz^{-1} = y, zy^{-1} = xz, z^{3k} = 1\}\) with \(k \geq 1\).

Recall that \(H_1(M; \mathbb{Z}) \cong \pi_1(M)/[\pi_1(M), \pi_1(M)]\), where \([\pi_1(M), \pi_1(M)]\) denotes the commutator subgroup of \(\pi_1(M)\). One can check that \(H_1(M; \mathbb{Z}) \cong \mathbb{Z}_m, \mathbb{Z}_4, \mathbb{Z}_2 \oplus \mathbb{Z}_2, \mathbb{Z}_2, 0, \mathbb{Z}_{2k}\) and \(\mathbb{Z}_{2k}\) when \(\pi_1(M) \cong C_m, D^*_{4m}\) with \(m\) odd or even, \(T^*, O, I^*, D^*_{2\times(2n+1)}\) and \(T^*_{S, 3k}\) respectively (for example, \([D^*_{4m}, D^*_{4m}] = \{x y x^{-1} y^{-1} = x y x^{-1} y^{-1} = (x y)^2 y^{-m-2} = y^{-2}\}\), so \(D^*_{4m}/[D^*_{4m}, D^*_{4m}] \cong \mathbb{Z}_4\) or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2\) for \(m\) odd or even respectively).

In the proof above, \(T^*, O^*\) and \(I^*\) are a binary tetrahedral group of order 24, a binary octahedral group of order 48, and a binary icosahedral group of order 120 respectively.

Acknowledgements

The author would like to thank Professor Xiaochun Rong and Doctor Jiming Ma for their helpful discussions on Hamilton’s work and 3-manifolds respectively, and the referee for his suggestions.

References

School of Mathematical Sciences (& Lab. Math. Com. Sys.), Beijing Normal University, Beijing 100875, People’s Republic of China

E-mail address: wyusheng@163.com, wwyusheng@gmail.com

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use