Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Niveau spectral sequences on singular schemes and failure of generalized Gersten conjecture

Author: Paul Balmer
Journal: Proc. Amer. Math. Soc. 137 (2009), 99-106
MSC (2000): Primary 19E08, 19D35, 18E30
Published electronically: July 10, 2008
MathSciNet review: 2439430
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a new local-global spectral sequence for Thomason's non-connective $ K$-theory, generalizing the Quillen spectral sequence to possibly non-regular schemes. Our spectral sequence starts at the $ E_1$-page where it displays Gersten-type complexes. It agrees with Thomason's hypercohomology spectral sequence exactly when these Gersten-type complexes are locally exact, a condition which fails for general singular schemes, as we indicate.

References [Enhancements On Off] (What's this?)

  • 1. P. Balmer.
    Triangular Witt groups. I. The 12-term localization exact sequence.
    $ K$-Theory, 19(4):311-363, 2000. MR 1763933 (2002h:19002)
  • 2. P. Balmer.
    Supports and filtrations in algebraic geometry and modular representation theory.
    Amer. J. Math., 129(5):1227-1250, 2007. MR 2354319
  • 3. P. Balmer and M. Schlichting.
    Idempotent completion of triangulated categories.
    J. Algebra, 236(2):819-834, 2001. MR 1813503 (2002a:18013)
  • 4. G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel.
    Cyclic homology, cdh-cohomology and negative $ K$-theory, Ann. of Math., to appear.
  • 5. S. P. Dutta, M. Hochster, and J. E. McLaughlin.
    Modules of finite projective dimension with negative intersection multiplicities.
    Invent. Math., 79(2):253-291, 1985. MR 778127 (86h:13023)
  • 6. S. C. Geller.
    A note on injectivity of lower $ K$-groups for integral domains.
    In Applications of algebraic $ K$-theory to algebraic geometry and number theory, Parts I, II (Boulder, Colo., 1983), volume 55 of Contemp. Math., pages 437-447, Amer. Math. Soc., Providence, RI, 1986.
    With an appendix by R. Keith Dennis and Clayton C. Sherman. MR 862647 (87k:18013)
  • 7. J. Hornbostel and M. Schlichting.
    Localization in Hermitian $ K$-theory of rings.
    J. London Math. Soc. (2), 70(1):77-124, 2004. MR 2064753 (2005b:19007)
  • 8. M. Levine.
    Localization on singular varieties.
    Invent. Math., 91(3):423-464, 1988. MR 928491 (89c:14015a)
  • 9. S. Mochizuki.
    Gersten's conjecture for $ {K}_0$-groups., 2007.
  • 10. D. Quillen.
    Higher algebraic $ K$-theory. I.
    Algebraic $ K$-theory, I: Higher $ K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85-147, Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973. MR 0338129 (49:2895)
  • 11. M. Schlichting.
    Negative $ K$-theory of derived categories.
    Math. Z., 253(1):97-134, 2006. MR 2206639 (2006i:19003)
  • 12. R. W. Thomason and T. Trobaugh.
    Higher algebraic $ K$-theory of schemes and of derived categories.
    The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 247-435. Birkhäuser, Boston, MA, 1990. MR 1106918 (92f:19001)
  • 13. T. Vorst.
    Localization of the $ K$-theory of polynomial extensions.
    Math. Ann., 244(1):33-53, 1979.
    With an appendix by Wilberd van der Kallen. MR 550060 (80k:18016)
  • 14. C. A. Weibel.
    $ K$-theory and analytic isomorphisms.
    Invent. Math., 61(2):177-197, 1980. MR 590161 (83b:13011)
  • 15. C. A. Weibel.
    Negative $ K$-theory of varieties with isolated singularities.
    In Proceedings of the Luminy conference on algebraic $ K$-theory (Luminy, 1983), volume 34, pages 331-342, 1984. MR 772067 (86d:14015)
  • 16. C. A. Weibel.
    A Brown-Gersten spectral sequence for the $ K$-theory of varieties with isolated singularities.
    Adv. in Math., 73(2):192-203, 1989. MR 987274 (90j:14012)
  • 17. C. A. Weibel.
    A Quillen-type spectral sequence for the $ K$-theory of varieties with isolated singularities.
    $ K$-Theory, 3(3):261-270, 1989. MR 1040402 (91g:14009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 19E08, 19D35, 18E30

Retrieve articles in all journals with MSC (2000): 19E08, 19D35, 18E30

Additional Information

Paul Balmer
Affiliation: Department of Mathematics, Box 951555, University of California, Los Angeles, California 90095-1555

Keywords: Spectral sequence, $K$-theory, singular schemes
Received by editor(s): September 17, 2007
Received by editor(s) in revised form: January 9, 2008
Published electronically: July 10, 2008
Additional Notes: The author’s research was supported by NSF grant 0654397.
Communicated by: Paul Goerss
Article copyright: © Copyright 2008 Paul Balmer

American Mathematical Society