ON THE FARRELL COHOMOLOGY OF THE
MAPPING CLASS GROUP OF NON-ORIENTABLE SURFACES

GRAHAM HOPE AND ULRIKE TILLMANN
(Communicated by Paul Goerss)

Abstract. We study the unstable cohomology of the mapping class groups
N_g of non-orientable surfaces of genus g. In particular, we determine for all
genus g and all primes p when the group N_g is p-periodic.

To this purpose we show that N_g is a subgroup of the mapping class group
Γ_{g-1} of an orientable surface of genus $g - 1$ and deduce that N_g has finite
virtual cohomological dimension. Furthermore, we describe precisely which
finite groups of odd order are subgroups of N_g.

1. Introduction

Because of their close relation to moduli spaces of Riemann surfaces, the map-
ing class groups of orientable surfaces have been the focus of much mathematical
research for a long time. Less well studied is the mapping class group of non-
orientable surfaces, although recently the study of mapping class groups has also
been extended to the non-orientable case. This paper contributes to this pro-
gramme. While Wahl [W] proved the analogue of Harer’s (co)homology stability in
the non-oriented case, we concentrate here on the unstable part of the cohomology.
In particular, we study the question of p-periodicity.

Recall that a group G of finite virtual cohomological dimension (vcd) is said to be
p-periodic if the p-primary component of its Farrell cohomology ring, $\hat{H}^*(G, \mathbb{Z})_p$,
contains an invertible element of positive degree. Farrell cohomology extends Tate
cohomology of finite groups to groups of finite vcd. In degrees above the vcd it
agrees with the ordinary cohomology of the group. For the mapping class group in
the oriented case, the question of p-periodicity has been examined by Xia [X] and
by Glover, Mislin and Xia [GMX]. Here we determine exactly for which genus and
prime p the non-orientable mapping class groups are p-periodic. In the process we
also establish that these groups are of finite cohomological dimension and present
a classification theorem for finite group actions on non-orientable surfaces.

Let N_g be a non-orientable surface of genus g, i.e. the connected sum of g
projective planes. The associated mapping class group N_g is defined to be the group
of connected components of the group of homeomorphisms of N_g. The mapping
class groups of the projective plane and the Klein bottle are well known to be the
trivial group and the Klein 4-group respectively, namely

$N_1 = \{e\}$ and $N_2 = C_2 \times C_2$.

Received by the editors September 25, 2007, and, in revised form, January 18, 2008.
2000 Mathematics Subject Classification. Primary 57M60; Secondary 20J05, 57S05.

©2008 American Mathematical Society
Throughout this paper we may therefore assume that \(g \geq 3 \). Our main result can now be stated as follows.

Theorem 1.1. \(\mathcal{N}_g \) is not \(p \)-periodic in the following two cases.

1. Assume \(p = 2 \). Then \(\mathcal{N}_g \) is not \(p \)-periodic.
2. Assume \(p \) is odd and \(g \equiv 2 \pmod{p} \). Write \(g = lp + 2 \) with \(l = kp - t \) for some \(k > 0 \) and \(0 \leq t < p \). If \(k > t - 2 \), then \(\mathcal{N}_g \) is not \(p \)-periodic.

In all other cases \(\mathcal{N}_g \) is \(p \)-periodic.

In particular, \(\mathcal{N}_g \) is \(p \)-periodic whenever \(p \) is odd and \(g \) is not equal to 2 mod \(p \).

On the other hand, for odd \(p \), \(\mathcal{N}_g \) is not \(p \)-periodic for all \(g > p^3 \) with \(g \) equal to 2 mod \(p \).

In outline, we will first show that the mapping class group \(\mathcal{N}_g \) of a non-orientable surface of genus \(g \) is a subgroup of the mapping class group \(\Gamma_{g-1} \) of an orientable surface of genus \(g - 1 \). Many properties of \(\Gamma_{g-1} \) are thus inherited by \(\mathcal{N}_g \). In particular it follows that \(\mathcal{N}_g \) is of finite virtual cohomological dimension and its Farrell cohomology is well-defined. We then recall that a group \(G \) is not \(p \)-periodic precisely when \(G \) has a subgroup isomorphic to \(\mathbb{C}_p \times \mathbb{C}_p \), the product of two cyclic groups of order \(p \). Motivated by this we prove a classification theorem for actions of finite groups on non-orientable surfaces. From this it is straightforward to deduce necessary and sufficient conditions for \(\mathbb{C}_p \times \mathbb{C}_p \) to act on \(\mathcal{N}_g \). Finally, we discuss some open questions.

2. Preliminaries

Let \(\Sigma_{g-1} \) be a closed orientable surface of genus \(g - 1 \), embedded in \(\mathbb{R}^3 \) such that \(\Sigma_{g-1} \) is invariant under reflections in the \(xy \)-, \(yz \)-, and \(xz \)-planes. Define a (orientation-reversing) homeomorphism \(J : \Sigma_{g-1} \to \Sigma_{g-1} \) by

\[
J(x, y, z) = (-x, -y, -z).
\]

\(J \) is reflection in the origin. Under the action of \(J \) on \(\Sigma_{g-1} \), the orbit space is homeomorphic to a non-orientable surface \(\mathcal{N}_g \) of genus \(g \) with associated orientation double cover

\[
p : \Sigma_{g-1} \longrightarrow \mathcal{N}_g.
\]

Let \(\Gamma_{g-1}^\pm \) denote the extended mapping class group, i.e. the group of connected components of the homeomorphisms of \(\Sigma_{g-1} \), not necessarily orientation-preserving. \(\Gamma_{g-1} \) as usual will denote its index 2 subgroup corresponding to the orientation preserving homeomorphisms.

Birman and Chillingworth [BC] give the following description of the mapping class group \(\mathcal{N}_g \). Let \(C(J) \subset \Gamma_{g-1}^\pm \) be the group of connected components of

\[
S(J) := \{ \varphi \in \text{Homeo}(\Sigma_{g-1}) | \exists \tilde{\varphi} \text{ isotopic to } \varphi \text{ such that } \tilde{\varphi}J = J \tilde{\varphi} \},
\]

the subgroup of homeomorphisms that commute with \(J \) up to isotopy. By definition, \(J \) generates a normal subgroup of \(C(J) \). Birman and Chillingworth identify the quotient group with the mapping class group of the orbit space \(\mathcal{N}_g = \Sigma_{g-1}/\langle J \rangle \),

\[
\mathcal{N}_g \cong \frac{C(J)}{\langle J \rangle}.
\]

The following result has proved very useful, as many properties of \(\Gamma_{g-1} \) are inherited by \(\mathcal{N}_g \).
Key-Lemma 2.1. N_g is isomorphic to a subgroup of Γ_{g-1}.

Proof. Consider the projection

$$\pi : C(J) \rightarrow \frac{C(J)}{(J)} \cong N_g.$$

For a subgroup G of N_g write

$$\pi^{-1}(G) = G^+ \cup G^- \subset C(J),$$

where

$$G^+ := \pi^{-1}(G) \cap \Gamma_{g-1} \quad \text{and} \quad G^- := \pi^{-1}(G) \cap (\Gamma_{g-1}^+ \setminus \Gamma_{g-1}).$$

Note that $G^- = JG^+$. We claim that $\pi|_{G^+} : G^+ \rightarrow G$ is an isomorphism. Indeed, injectivity holds, as the only non-zero element J in the kernel of π is not an element of G^+. Surjectivity is also immediate as every element in G has exactly two pre-images under π which differ by J. Thus exactly one of them is an element in the orientable mapping class group Γ_{g-1}, that is, an element of G^+. \[\square \]

Recall that Farrell cohomology is defined only for groups of finite virtual cohomological dimension.

Corollary 2.2. The non-orientable mapping class group N_g has finite virtual cohomological dimension with

$$vcd N_g \leq 4g - 9.$$

Proof. The mapping class group Γ_{g-1} is virtually torsion free. Furthermore, from Harer [H], we know that Γ_{g-1} is of finite virtual cohomological dimension $4(g-1) - 5$. Hence every subgroup of Γ_{g-1} will also have finite virtual cohomological dimension with vcd less than or equal to $4g - 9$, cf. [Br, Exercise 1, p. 229]. The corollary now follows from the Key-Lemma. \[\square \]

3. Classifying finite group actions on N_g

The purpose of this section is to give necessary and sufficient criteria for when a finite group is isomorphic to a subgroup of N_g. For the purpose of this paper we are only interested in groups of odd order.

Theorem 3.1. Let N_g denote a non-orientable surface of genus g, and let A be a finite group of odd order. Then A is isomorphic to a subgroup of $\text{Homeo}(N_g)$ if and only if A has partial presentation

$$(c_1, \ldots, c_h, y_1, \ldots, y_t | \ldots)$$

such that

1. $h \geq 1$;
2. $\prod_{i=1}^{h} c_i^2 \prod_{i=1}^{t} y_i = 1$;
3. the order of y_i in A is m_i;
4. the Riemann-Hurwitz equation holds:

$$g - 2 = |A|(h - 2) + |A| \sum_{i=1}^{t} (1 - \frac{1}{m_i}).$$

The proof of the theorem is an application of the theory of covering spaces. Different versions of the theorem can be found in the literature; see for example [I]. For completeness and convenience for the reader we include a proof.
Proof: Assume \(A \) has a partial presentation of the form described in the theorem, and let \(N_h \) be a non-orientable surface of genus \(h \geq 1 \). Represent \(N_h \) as a \(2h \)-sided polygon with sides to be identified in pairs, where the polygon is bounded by the cycle \(c_1c_2c_3\ldots c_hc_1 \). At a vertex add \(t \) (non-intersecting) loops \(y_1, \ldots, y_t \) so that the resulting 2-cells bounded by \(y_1, \ldots, y_t \) are mutually disjoint and are contained in the polygon; see Figure 1. Choose a direction for each of the loops \(y_1, \ldots, y_t \) and call the resulting one-vertex graph \(G \). Note that we can give \(N_h \) the structure of a CW-complex so that \(G \) is cellularly embedded in \(N_h \). A covering graph \(\tilde{G} \) is obtained from \(G \) as follows. Its vertex set and edge set are \(A \) and \(E \times A \) respectively, where \(E \) is the edge set of the graph \(G \). If \(e \) is an edge of \(G \), then the edge \((e, a)\) of \(\tilde{G} \) runs from the vertex \(a \) to the vertex \(ae \). The forgetful map of graphs \(p : \tilde{G} \to G \) is a covering map which we now extend to a branched covering map \(p : S \to N_h \) of surfaces as follows.

Label the regions of \(N_h \) as \(D_1, D_2, \ldots, D_t \) and \(D_{t+1} \), where \(D_1, D_2, \ldots, D_t \) are bounded by the loops \(y_1, y_2, \ldots, y_t \) and \(D_{t+1} \) is the remaining region. For each cycle \(C \) in \(G \), \(p^{-1}(C) \) is a collection of cycles in \(\tilde{G} \). The cycles \(y_i \) have \(\frac{|A|}{m_i} \) corresponding cycles in \(\tilde{G} \), for each \(i \in \{1, \ldots, t\} \). Finally, the cycle \(c_1c_2c_3\ldots c_hc_1 \) has \(|A| \) cycles above it in \(\tilde{G} \), because the order of \(\prod_{j=1}^{h-1} c_{j+1}^2 \prod_{i=1}^{t} y_i \) in \(A \) is 1.

Each of these cycles in \(\tilde{G} \) attach a 2-cell. Then extend \(p \) by mapping the interior of each 2-cell onto the interior of the 2-cell \(D_n \) by using the maps \(z \mapsto z^d \), where \(d = m_i \) for \(n \in \{1, \ldots, t\} \) and \(d = 1 \) for \(n = t + 1 \). We obtain a surface \(S \) which admits a CW-structure with \(\tilde{G} \) cellularly embedded in \(S \).

We now argue by contradiction that \(S \) is non-orientable. Suppose that \(S \) is an orientable surface, and let \(A^0 \subset A \) be the subgroup of homeomorphisms which preserve the orientation. Now \(A^0 \neq A \) since \(N_g \) is non-orientable. So, \(A^0 \) is a subgroup of index 2 in \(A \), which contradicts our assumption that \(A \) is of odd order. So \(S \) is non-orientable. Finally, its genus \(g \) is determined by the Riemann-Hurwitz formula, condition (4).

Conversely, assume \(A \) acts on the non-orientable surface \(S = N_g \). As \(A \) is of odd order, \(A \) acts without reflections and its singular set is discrete. Thus the quotient map \(p : S \to S/A \) is a branched covering, and \(S/A \) is a non-orientable surface of genus \(h \geq 1 \). Represent \(S/A \) as a \(2h \)-sided polygon with sides \(c_1, c_1, c_2, c_2, \ldots, c_h, c_h \) to be identified in pairs, and in which the branch points of \(p \) are in the interior of

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{A non-orientable surface of genus \(h \).}
\end{figure}
the polygon. Now add mutually disjoint loops \(y_1, \ldots, y_t \) around each branch point, all starting at the same vertex as indicated in Figure 1. Let us call the resulting one-vertex graph \(G \). Its inverse image \(p^{-1}(G) \) is a Cayley graph for the group \(A \): vertices correspond to the elements of \(A \) and at each vertex there are \(2(h + t) \) directions corresponding to generators \(c_i \) and \(y_i \). The three conditions for the partial presentations are easily verified. First note that \(h \) is positive as \(S/A \) is non-orientable. As \(\prod_{j=1}^{h} c_j \prod_{i=1}^{t} y_i = 1 \) is a closed curve in \(S/A \), so it is in \(S \) and hence must represent the identity in \(A \). The order \(m_i \) of \(y_i \) is precisely the branch number of the singular point that \(y_i \) encircles. Thus the formula in condition (4) follows from the Riemann-Hurwitz equation. \(\square \)

As we are interested in subgroups of the mapping class group, we state the following result, which is well-known at least for orientable surfaces.

Theorem 3.2. A finite group \(G \) is a subgroup of the mapping class group \(N_g \) if and only if it is a subgroup of \(\text{Homeo}(N_g) \).

Proof. If \(G \) is a finite subgroup of \(N_g \), then it follows by the Nielsen realisation problem for non-orientable surfaces \([K]\) that \(G \) lifts to a subgroup of \(\text{Homeo}(N_g) \). Conversely, let \(G \) be a finite subgroup of \(\text{Homeo}(N_g) \). An application of the Lefschetz Fixed Point Formula shows that for all \(g \geq 3 \), any element of finite order in \(\text{Homeo}(N_g) \) cannot be homotopic to the identity. Hence the kernel of the canonical projection \(\text{Homeo}(N_g) \to N_g \) when restricted to a finite subgroup \(G \in \text{Homeo}(N_g) \) must be trivial. \(\square \)

Theorem 3.1 and Theorem 3.2 together imply that a finite group \(A \) of odd order is a subgroup of the mapping class group \(N_g \) if and only if it has partial presentation such that conditions (1) to (4) in Theorem 3.1 hold.

4. The \(p \)-periodicity of \(N_g \)

Using the result of the previous section we can now prove our main result. Theorem 1.1 is equivalent to the following three lemmata. Recall (see e.g. \([Br\], Theorem 6.7\)) that a group of finite vcd is \(p \)-periodic if and only if it does not contain an elementary abelian subgroup of rank two.

Lemma 4.1. \(N_g \) is not 2-periodic.

Proof. It will suffice to exhibit a subgroup of \(N_g \) isomorphic to \(C_2 \times C_2 \). Let \(R_1 \) and \(R_2 \) be homeomorphisms of \(\Sigma_{g-1} \) (embedded in \(\mathbb{R}^3 \) as before) which are rotations by \(\pi \), given by the formulæ

\[
R_1(x, y, z) = (-x, -y, z),
R_2(x, y, z) = (x, -y, -z).
\]

Clearly, \(J, R_1 \) and \(R_2 \) are all involutions. For \(g \geq 3 \) the induced actions on the first homology groups \(H_1(\Sigma_{g-1}) \) are non-trivial and all different; they define non-trivial, distinct elements of order two in \(\Gamma_{g-1}^\pm \). From their defining formulæ it is clear that they commute with each other. Hence, they generate a subgroup

\[
H = C_2 \times C_2 \times C_2 \subset C(J) \subset \Gamma_{g-1}^\pm,
\]

and thus

\[
\pi(H) \cong C_2 \times C_2 \subset \frac{C(J)}{(J)} \cong N_g.
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Thus \mathcal{N}_g is never 2-periodic, □

Lemma 4.2. Let p be odd. \mathcal{N}_g is not p-periodic in the following three cases.

1. If $g = lp + 2$ and $l = kp$ where $k > 0$, then \mathcal{N}_g is not p-periodic.
2. If $g = lp + 2$ and $l = kp - 1$ where $k > 0$, then \mathcal{N}_g is not p-periodic.
3. If $g = lp + 2$, $l = kp - t$ and $k > t - 2$ where $2 \leq t < p$, then \mathcal{N}_g is not p-periodic.

Proof. In all three cases we will use Theorem 3.1 (and Theorem 3.2) to exhibit subgroups $C_p \times C_p \subset \mathcal{N}_g$. Hence, in these cases \mathcal{N}_g is not p-periodic.

Case (1): Let $h := k + 2 \geq 3$. A presentation of $A = C_p \times C_p = \langle c_1 \rangle \times \langle c_2 \rangle$ can now be given as follows:

$$A = \langle c_1, \ldots, c_h | c_3 = c_1^{p-1}c_2^{-1}, c_4 = \ldots = c_h = 1, c_1c_2 = c_2c_1, c_1^p = c_2^p = 1 \rangle.$$

One checks that the four conditions of Theorem 3.1 are satisfied; here

$$g - 2 = p^2(h - 2).$$

Case (2): Let $h := k + 1 \geq 2$. A presentation of $A = C_p \times C_p = \langle c_1 \rangle \times \langle c_2 \rangle$ is given by

$$A = \langle c_1, \ldots, c_h, y_1 | y_1 = c_1^{p-2}c_2^{p-2}, c_3 = \ldots = c_h = 1, c_1c_2 = c_2c_1, c_1^p = c_2^p = 1 \rangle.$$

Again one easily checks that the four conditions of Theorem 3.1 are satisfied; in this case

$$g - 2 = p^2(h - 2) + p^2(1 - \frac{1}{p}).$$

Case (3): Let $h := k + 2 - t \geq 1$. As also $t \geq 2$, a presentation of $A = C_p \times C_p = \langle y_1 \rangle \times \langle y_2 \rangle$ is now given by

$$A = \langle c_1, \ldots, c_h, y_1, y_2, \ldots, y_t | c_1 = \frac{y_1}{y_2} \frac{y_3}{y_4} \ldots \frac{y_{t-1}}{y_t}, y_2y_3 = \ldots = y_t, c_2 = c_3 = \ldots = c_h = 1, y_1y_2 = y_2y_1, y_1^p = y_2^p = 1 \rangle.$$

This presentation satisfies the conditions of Theorem 3.1 with

$$g - 2 = p^2(h - 2) + p^2t(1 - \frac{1}{p}).$$

Hence in all these three cases, i.e. whenever condition (2) of Theorem 1.1 holds, the mapping class group \mathcal{N}_g is not p-periodic. □

Lemma 4.3. Let p be odd and assume that g does not satisfy any of the three conditions of Lemma 4.2; then \mathcal{N}_g is p-periodic.

Proof. Let p be odd and suppose that there exists a subgroup $A = C_p \times C_p$ contained in \mathcal{N}_g. Then by Theorem 3.1 (and Theorem 3.2), A acts on \mathcal{N}_g and the Riemann-Hurwitz Formula must be satisfied for some $h \geq 1$ where h is the genus of the quotient surface \mathcal{N}_g/A. (h cannot be zero as the sphere cannot arise as the quotient of a non-oriented surface.) Let s be the number of singular points of the action of A on \mathcal{N}_g, and let a be an element in the stabiliser of some singular point x. By Key-Lemma 2.1, a lifts to an element of Γ_{g-1} and by the Nielsen realization problem to a homeomorphism, also denoted by a, of Σ_{g-1}. The singular point x lifts to two points in Σ_{g-1}, and under the action of a these form two separate orbits as the group A and hence the element a are of odd order. So a is in the stabiliser of these two points and therefore must act freely on the tangent planes at these points.
Remark 4.4. A group is p-periodic if and only if it does not contain a subgroup isomorphic to $C_p \times C_p$. Therefore, any subgroup of a p-periodic group is p-periodic. Hence by the Key-Lemma 2.1, the p-periodicity of any Γ_{g-1} implies the p-periodicity of N_g. (In particular, as Γ_{g-1} is always p periodic for odd p and g not equal to 2 mod p, so is N_g.) However, comparing our results with those of Xia [Xi], we note here that the converse is false. For example, when $p = 5$ and $g = 7$, Γ_6 is not p-periodic but N_7 is. However, for a fixed p there are at most finitely many such g where Γ_{g-1} is not p-periodic but N_g is.

5. The p-period and other open questions

We will briefly discuss three questions that arise from our study.

5.1. The p-period. Recall that the p-period d of a p-periodic group G is the least positive degree of an invertible element in its Farrell cohomology group $\tilde{H}^*(G, \mathbb{Z})_{(p)}$. The question thus arises as to what the p-period of N_g is when N_g is p-periodic.

For any group G of finite vcd, an invertible element in $\tilde{H}^*(G, \mathbb{Z})_{(p)}$ restricts to an invertible element in the Farrell cohomology of any subgroup of G. Thus the p-period of a subgroup divides the p-period of G.

The main result of [GMX] is that for all g such that Γ_{g-1} is p-periodic, the p-period divides $2(p-1)$. Hence for all such g, the p-period of N_g also divides $2(p-1)$. However, as we noted above, there are pairs p and g for which N_g is p-periodic but Γ_{g-1} is not. We expect that the methods of [GMX] can be pushed to cover also these cases. It remains also to find lower bounds for the p-period.

5.2. Punctured mapping class groups. In the oriented case Lu [L1], [L2] has studied the p-periodicity of the mapping class groups with marked points, and proved that they are all p-periodic of period 2. One might expect a similar result to hold for the mapping class group of non-orientable surfaces with marked points.

5.3. The virtual cohomological dimension. We have established in Corollary 2.2 that N_g has finite virtual cohomological dimension and that this dimension is less than or equal to $4g - 9$. It seems an interesting project to determine the vcd of N_g.

(for otherwise a would be homotopic to a homeomorphism that fixes a whole disk, but all such homeomorphisms are well-known to give rise to elements of infinite order in the mapping class group). This also implies that the action of a on the tangent plane at x in N_g is free. It follows that the stabiliser of each singular point is isomorphic to C_p, as these are the only non-trivial subgroups of A that are also subgroups of $GL_2(\mathbb{R})$. So by the Riemann-Hurwitz equation, for some $h \geq 1$,

$$g - 2 = p^2(h - 2) + ps(p - 1).$$

From this it follows that $g = lp + 2$ for some $l \geq 1$, and furthermore that $l = p(h - 2 + s) - s$. Note that $l = -s$ (mod p). Now write $s = qp + t$ for some $q \geq 0$ and $0 \leq t < p$. Then $l = p(h + q(p - 2) - 2 + t) - t$. Thus we are in the situation of Lemma 4.2. Indeed, as $h \geq 1$, we can write $l = kp - t$ with $k = h + q(p - 2) + t = h + 2 - t$. Lemma 4.3 follows from this.

□
References

Mathematical Institute, Oxford University, Oxford OX1 3LB, United Kingdom
E-mail address: hope@maths.ox.ac.uk

Mathematical Institute, Oxford University, Oxford OX1 3LB, United Kingdom
E-mail address: tillmann@maths.ox.ac.uk