Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Farrell cohomology of the mapping class group of non-orientable surfaces


Authors: Graham Hope and Ulrike Tillmann
Journal: Proc. Amer. Math. Soc. 137 (2009), 393-400
MSC (2000): Primary 57M60; Secondary 20J05, 57S05
DOI: https://doi.org/10.1090/S0002-9939-08-09507-5
Published electronically: September 3, 2008
MathSciNet review: 2439465
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the unstable cohomology of the mapping class groups $ \mathcal{N}_g$ of non-orientable surfaces of genus $ g$. In particular, we determine for all genus $ g$ and all primes $ p$ when the group $ \mathcal{N}_g$ is $ p$-periodic.

To this purpose we show that $ \mathcal{N}_g$ is a subgroup of the mapping class group $ \Gamma_{g-1}$ of an orientable surface of genus $ g-1$ and deduce that $ \mathcal{N}_g$ has finite virtual cohomological dimension. Furthermore, we describe precisely which finite groups of odd order are subgroups of $ \mathcal{N}_g$.


References [Enhancements On Off] (What's this?)

  • [BC] Birman, J.S.; Chillingworth, D.R.J.: On the homeotopy group of a non-orientable surface, Proc. Camb. Phil. Soc. 71, 437-448 (1972). MR 0300288 (45:9334)
  • [Br] Brown, K.S.: Cohomology of groups, Graduate Texts in Mathematics 87, Springer-Verlag, New York (1982). MR 672956 (83k:20002)
  • [GMX] Glover, H.H.; Mislin, G.; Xia, Y.: On the Farrell cohomology of mapping class groups, Invent. Math. 109, 535-545 (1992). MR 1176203 (93k:57034)
  • [H] Harer, J.: The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84, 157-176 (1986). MR 830043 (87c:32030)
  • [K] Kerckhoff, S.: The Nielson realization problem, Ann. of Math. (2) 117, 235-263 (1983). MR 690845 (85e:32029)
  • [L1] Lu, Q.: Periodicity of the punctured mapping class group, J. Pure Appl. Algebra 155, 211-235 (2001). MR 1801416 (2002b:57018)
  • [L2] Lu, Q.: Farrell cohomology of low genus pure mapping class groups with punctures, Alg. Geom. Top. 2, 537-562 (2002). MR 1917066 (2003k:55005)
  • [T] Tucker, T.: Finite groups acting on surfaces and the genus of a group, J. Combin. Theory Ser. B 34, 82-98 (1983). MR 701174 (85b:20055)
  • [W] Wahl, N.: Homological stability for the mapping class groups of non-orientable surfaces, Invent. Math. 171, 389-424 (2008). MR 2367024
  • [X] Xia, Y.: The $ p$-periodicity of the mapping class group and the estimate of its $ p$-period, Proc. Amer. Math. Soc. 116, 1161-1169 (1992). MR 1104406 (93b:57032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M60, 20J05, 57S05

Retrieve articles in all journals with MSC (2000): 57M60, 20J05, 57S05


Additional Information

Graham Hope
Affiliation: Mathematical Institute, Oxford University, Oxford OX1 3LB, United Kingdom
Email: hope@maths.ox.ac.uk

Ulrike Tillmann
Affiliation: Mathematical Institute, Oxford University, Oxford OX1 3LB, United Kingdom
Email: tillmann@maths.ox.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-08-09507-5
Received by editor(s): September 25, 2007
Received by editor(s) in revised form: January 18, 2008
Published electronically: September 3, 2008
Communicated by: Paul Goerss
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society