A LAW OF LARGE NUMBERS FOR ARITHMETIC FUNCTIONS

KATUSI FUKUYAMA AND YUTAKA KOMATSU

(Communicated by Richard C. Bradley)

Abstract. We prove the weighted strong law of large numbers for every integrable i.i.d. sequence where the weights are given by a positive strongly additive function satisfying the Lindeberg condition. This result solves one of the open problems raised in the paper by Berkes and Weber (2007).

1. Main result

Let f be a strongly additive arithmetic function, i.e.,

$$f(mn) = f(m) + f(n) \text{ if } \gcd(m,n) = 1,$$

and

$$f(p^n) = f(p) \quad \text{for all primes } p \text{ and positive integers } n.$$

Erdős-Kac [2] proved that if $f(p) = O(1)$ and $B_p \to \infty$ where p varies along primes, then the sequence $\{f(n)\}$ obeys the central limit theorem, i.e.,

$$\lim_{N \to \infty} \frac{1}{N} \# \{ n \leq N \mid f(n) \leq A_N + xB_N^{1/2} \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du,$$

where

$$A_n = \sum_{p < n} f(p) \quad \text{and} \quad B_n = \sum_{p < n} f^2(p) \quad \text{for all } \varepsilon > 0.$$

Here and in the sequel, we follow the usual convention and denote the summation along the primes by \sum_p. Kubilius [4] and Shapiro [5] relaxed the condition $f(p) = O(1)$ to the Lindeberg condition below:

$$\lim_{N \to \infty} \frac{1}{B_N} \sum_{\{ p < N : f(p) \geq \varepsilon B_N^{1/2} \}} \frac{f^2(p)}{p} = 0 \quad \text{for all } \varepsilon > 0.$$

The purpose of this paper is to prove the following theorem and show that the irregularity of a positive strongly additive function f does not have an effect on the weighted law of large numbers.

Received by the editors November 5, 2007, and, in revised form, December 17, 2007, and January 13, 2008.

2000 Mathematics Subject Classification. Primary 60F15, 11A25; Secondary 60G50.

Key words and phrases. Strong law of large numbers, strongly additive functions.

The first author was supported in part by Grant-in-Aid for Scientific Research (B) 17340029 from the Japan Society for the Promotion of Sciences.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication

349
Theorem 1.1. Suppose that a positive strongly additive function f satisfies the Lindeberg condition (1.1). Then for any sequence $\{X_n\}$ of independent and identically distributed integrable random variables, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n) X_n / \sum_{n=1}^{N} f(n) = E X_1 \text{ a.s.}$$

Berkes-Weber [1] proved the same conclusion by assuming

$$f(p) = o(B_p^{1/2}) \quad \text{and} \quad B_p \to \infty \quad \text{as} \quad p \to \infty,$$

which is stronger than the Lindeberg condition (1.1). They also proved it by assuming the Lindeberg condition and the following smoothness condition:

$$\sup_{n \leq p, p' \leq n^2} \frac{f(p)}{f(p')} = O(1),$$

and posed the question whether the Lindeberg condition alone is sufficient to have the same conclusion. Our result, which is proved by simple calculations without using a randomization technique as is used in [1], gives an affirmative answer to this question.

2. Proof

We use the following asymptotics, which are proved in [1] under the Lindeberg condition (1.1):

$$\sum_{n=1}^{N} f(n) \sim N A_N,$$

(2.1)

$$\sum_{n=1}^{N} f^2(n) \sim N A_N^2.$$

(2.2)

By (2.2), we can take a constant $C > 0$ such that

$$\sum_{n=1}^{N} f^2(n) \leq \frac{C N A_N^2}{2} \quad (N \geq 1).$$

(2.3)

To prove our theorem, we appeal to the characterization by Jamison-Orey-Pruitt [3]:

Lemma 2.1. Let $\{w_k\}$ be a sequence of positive numbers and put $W_N = \sum_{n=1}^{N} w_n$. Then

$$\lim_{N \to \infty} \frac{1}{W_N} \sum_{n=1}^{N} w_n X_n = E X_1 \text{ a.s.}$$

holds for any sequence $\{X_n\}$ of independent and identically distributed integrable random variables if and only if

$$\limsup_{t \to \infty} \frac{1}{t} \# \{n : W_n \leq tw_n\} < \infty.$$

We apply this characterization by putting $w_n = f(n)$. Because of (2.1), it is sufficient to prove

$$\# \{n : n A_n \leq m f(n)\} \leq (1 + C)^2 m.$$

(2.4)
To begin with, we have
\[(2.5) \quad \# \{n : nA \leq mf(n)\} \leq m + m^{2} \sum_{n \geq m} \frac{f^{2}(n)}{n^{2}A_{n}^{2}}.\]

To bound the second term, we first prove
\[(2.6) \quad \sum_{m < n \leq M} \frac{f^{2}(n)}{n^{2}A_{n}^{2}} \leq \frac{C}{m} + \sum_{m < p < M} \frac{f(p)}{p^{2}A_{p}}, \quad (m < M).\]

By using the partial summation method, we have
\[
\begin{align*}
\sum_{m < n \leq M} \frac{f^{2}(n)}{n^{2}A_{n}^{2}} &= \sum_{m < n < M} \left(\sum_{k = m+1}^{n} f^{2}(k) \right) \left(\frac{1}{n^{2}A_{n}^{2}} - \frac{1}{(n+1)^{2}A_{n+1}^{2}} \right) + \left(\sum_{k = m+1}^{M} f^{2}(k) \right) \frac{1}{M^{2}A_{M}^{2}} \\
&= \sum_{m < n < M} \left(\sum_{k = m+1}^{n} f^{2}(k) \right) \left(\frac{1}{n^{2}} - \frac{1}{(n+1)^{2}} \right) + \frac{1}{(n+1)^{2}} \left(\frac{1}{A_{n}^{2}} - \frac{1}{A_{n+1}^{2}} \right) \\
&\quad + \left(\sum_{k = m+1}^{M} f^{2}(k) \right) \frac{1}{M^{2}A_{M}^{2}}.
\end{align*}
\]

Thanks to (2.3), we have \(\sum_{k = m+1}^{n} f^{2}(k) \leq CnA_{n}^{2}/2\) and hence
\[
\sum_{m < n \leq M} \frac{f^{2}(n)}{n^{2}A_{n}^{2}} \leq C \sum_{m < n < M} \left(\frac{1}{n(n+1)} + \frac{A_{n+1}^{2} - A_{n}^{2}}{2nA_{n+1}^{2}} \right) + \frac{C}{2M} \\
= \frac{C}{m+1} - \frac{C}{M} + C \sum_{m < n < M} \frac{A_{n+1}^{2} - A_{n}^{2}}{2nA_{n+1}^{2}} + \frac{C}{2M}.
\]

Since \(A_{n+1}^{2} - A_{n}^{2}\) vanishes if \(n\) is not prime and
\[
\frac{A_{p+1}^{2} - A_{p}^{2}}{2pA_{p+1}^{2}} = \frac{(A_{p+1} + A_{p})(A_{p+1} - A_{p})}{2pA_{p+1}^{2}} \leq \frac{2A_{p+1}f(p)}{2p^{2}A_{p+1}^{2}} \leq \frac{f(p)}{p^{2}A_{p}}
\]
for prime \(p\), we have (2.6).

By applying (2.6), we have
\[
\begin{align*}
\sum_{m < p < M} \frac{f(p)}{p^{2}A_{p}} &\leq \sum_{m < n \leq M} \frac{f(n)}{n^{2}A_{n}} \leq \left(\sum_{m < n \leq M} \frac{1}{n^{2}} \right)^{1/2} \left(\sum_{m < n \leq M} \frac{f^{2}(n)}{n^{2}A_{n}^{2}} \right)^{1/2} \\
&\leq \frac{1}{\sqrt{m}} \left(\frac{C}{m} + C \sum_{m < p < M} \frac{f(p)}{p^{2}A_{p}} \right)^{1/2}.
\end{align*}
\]

Therefore
\[
m^{2} \left(\sum_{m < p < M} \frac{f(p)}{p^{2}A_{p}} \right)^{2} \leq C + Cm \sum_{m < p < M} \frac{f(p)}{p^{2}A_{p}},
\]

and thereby
\[(2.7) \quad \sum_{m < p < M} \frac{f(p)}{p^{2}A_{p}} \leq C + \frac{\sqrt{C^{2}m^{2} + 4Cm^{2}}}{2m^{2}} \leq \frac{C + 1}{m}.\]
By letting $M \to \infty$, we see that (2.6) and (2.7) are valid even in the case $M = \infty$. Combining these with (2.5), we have (2.4). □

ACKNOWLEDGEMENTS

The authors thank the referee and the editor for valuable comments.

REFERENCES

DEPARTMENT OF MATHEMATICS, KOBE UNIVERSITY, ROKKO, KOBE, 657-8501 JAPAN

E-mail address: fukuyama@math.kobe-u.ac.jp

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, KOBE UNIVERSITY, ROKKO, KOBE, 657-8501 JAPAN

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use