Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On a Weyl inequality of operators in Banach spaces

Author: Bernd Carl
Journal: Proc. Amer. Math. Soc. 137 (2009), 155-159
MSC (2000): Primary 47B06, 47A75
Published electronically: July 10, 2008
MathSciNet review: 2439436
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ s=(s_n)$ be an injective and surjective $ s$-number sequence in the sense of Pietsch. We show for a Riesz-operator $ T:X\to X$ acting on a (complex) Banach space the following Weyl inequality between geometric means of eigenvalues and $ s$-numbers: For any $ 0<\delta \le 1$ and all $ n\in\mathbb{N}$,

$\displaystyle \left(\prod\limits_{i=1}^n \vert\lambda_i(T)\vert\right)^{\frac 1... ...{1+\delta}\right]} s_i(T)\right)^{\frac 1{\left[\frac n {1+\delta}\right]}}~, $

where $ c_0\ge 1$ is an absolute constant. The proof rests on an elementary mixing multiplicativity of an arbitrary $ s$-number sequence and a striking result of G. Pisier. The inequality is a contribution to the problem of estimating eigenvalues by $ s$-numbers first started in a strong sense by H. König (1986, 2001).

References [Enhancements On Off] (What's this?)

  • [CHe91] B. Carl, A. Hess, Estimates of covering numbers. J. Approx. Theory 65 (1991), 121-139. MR 1104155 (93d:47042)
  • [CHi07] B. Carl, A. Hinrichs, Optimal Weyl type inequalities for operators in Banach spaces. Positivity 11 (2007), 41-55. MR 2297321 (2007m:47036)
  • [CS90] B. Carl, J. Stephani, Entropy, Compactness and the Approximation of Operators. Cambridge University Press, 1990. MR 1098497 (92e:47002)
  • [DJ93] M. Defant, M. Junge, Some estimates on entropy numbers. Israel J. Math. 84 (1993) 417 - 433. MR 1244678 (94j:47034)
  • [H05] A. Hinrichs, Optimal Weyl inequalities in Banach spaces. Proc Amer. Math. Soc. 134 (2005), 731 - 735. MR 2180891 (2006f:47021)
  • [K86] H. König, Eigenvalue distribution of compact operators. Operator Theory: Advances and Applications 16, Birkhäuser, Basel, 1986. MR 889455 (88j:47021)
  • [K01] H. König, Eigenvalues of operators and applications. Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 941 - 974. MR 1863710 (2003f:47035)
  • [KRT80] H. König, J. R. Retherford, N. Tomczak-Jaegermann, On the eigenvalues of $ (p,2)$-summing operators and constants associated to normed spaces. J. Funct. Anal. 37 (1980), 88 - 126. MR 576647 (81m:47033)
  • [P80a] A. Pietsch, Weyl numbers and eigenvalues of operators in Banach spaces. Math. Ann. 247 (1980), 149 - 168. MR 568205 (82i:47073a)
  • [P80b] A. Pietsch, Operator Ideals. North-Holland, Amsterdam, New York, Oxford, 1980. MR 582655 (81j:47001)
  • [P87] A. Pietsch, Eigenvalues and $ s$-Numbers. Cambridge Studies in Advanced Mathematics 13, Cambridge University Press, 1987. MR 890520 (88j:47022b)
  • [Pi89a] G. Pisier, A new approach to several results of V. Milman. J. Reine Angew. Math. 393 (1989), 115 - 131. MR 972362 (90a:46038)
  • [Pi89b] G. Pisier, Volume Inequalities in the Geometry of Banach Spaces. Cambridge Univ. Press, 1989. MR 1036275 (91d:52005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B06, 47A75

Retrieve articles in all journals with MSC (2000): 47B06, 47A75

Additional Information

Bernd Carl
Affiliation: Mathematisches Institut, FSU Jena, Ernst-Abbe-Platz 1-3, D-07743 Jena, Germany

Keywords: Weyl inequalities, eigenvalue estimates, approximation numbers, $s$-numbers.
Received by editor(s): November 30, 2007
Published electronically: July 10, 2008
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society