Multiple points in and degenerations to elliptic curves

Author:
Ivan Petrakiev

Journal:
Proc. Amer. Math. Soc. **137** (2009), 65-71

MSC (2000):
Primary 14C20; Secondary 14N05

DOI:
https://doi.org/10.1090/S0002-9939-08-09540-3

Published electronically:
August 15, 2008

MathSciNet review:
2439426

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of bounding the dimension of the linear system of curves in of degree with prescribed multiplicities at general points (Harbourne (1986), Hirschowitz (1985)). We propose a new method, based on the work of Ciliberto and Miranda (2000, 2003), by specializing the general points to an elliptic curve in .

**1.**M. Atiyah, Vector bundles over an elliptic curve,*Proc. Lond. Math. Soc.*(3)**7**(1957), 414-452. MR**0131423 (24:A1274)****2.**L. Caporaso, J. Harris, unpublished notes.**3.**C. Ciliberto, R. Miranda, Degenerations of planar linear systems,*J. Reine Angew. Math.***501**(1998), 191-220. MR**1637857 (2000m:14005)****4.**C. Ciliberto, R. Miranda, Linear systems of plane curves with base points of equal multiplicity,*Trans. Amer. Math. Soc.***352**(2000), no. 9, 4037-4050. MR**1637062 (2000m:14006)****5.**C. Ciliberto, F. Cioffi, R. Miranda, F. Orrechia, Bivariate Hermite interpolation and linear systems of plane curves with base fat points,*Proceedings of the Asian Symposium on Computer Mathematics*, Lecture Notes Ser. Comput., 10, World Scientific Publ., River Edge, NJ (2003), 87-102. MR**2061827 (2005c:41002)****6.**O. Debarre,*Higher-Dimensional Algebraic Geometry*, Universitext, Springer-Verlag, New York (2001). MR**1841091 (2002g:14001)****7.**M. Dumnicki, W. Jarnicki, New effective bounds on dimension of a linear system in , J. Symbolic Comput.**42**(2007), 621-635. MR**2325918 (2008c:14009)****8.**M. Dumnicki, Reduction method for linear systems of plane curves with base fat points, preprint, math.AG/0606716.**9.**D. Eisenbud, J. Harris, Limit linear series: basic theory.*Invent. Math.***85**(1986), 337-371. MR**846932 (87k:14024)****10.**W. Fulton,*Intersection Theory*, Springer-Verlag, Berlin-New York (1998). MR**1644323 (99d:14003)****11.**A. Gimigliano,*On Linear Systems of Plane Curves*, Ph.D. thesis, Queen's University, Kingston, Ontario, CA (1987).**12.**B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane,*Canadian Mathematical Society Conference Proceedings*, 6, Amer. Math. Soc., Providence, RI (1986), 95-111. MR**846019 (87k:14041)****13.**R. Hartshorne,*Algebraic Geometry*, Graduate Texts in Mathematics, 52, Springer-Verlag, New York (1977). MR**0463157 (57:3116)****14.**A. Hirschowitz, La méthode d'Horace pour l'interpolation à plusieurs variables,*Manuscripta Math.***50**(1985), 337-388. MR**784148 (86j:14013)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14C20,
14N05

Retrieve articles in all journals with MSC (2000): 14C20, 14N05

Additional Information

**Ivan Petrakiev**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
igp@umich.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09540-3

Received by editor(s):
August 22, 2006

Received by editor(s) in revised form:
July 19, 2007, and December 28, 2007

Published electronically:
August 15, 2008

Additional Notes:
The author was partially supported by an NSF Graduate Research Fellowship.

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2008
American Mathematical Society