Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the expected number of zeros of a random harmonic polynomial


Authors: Wenbo V. Li and Ang Wei
Journal: Proc. Amer. Math. Soc. 137 (2009), 195-204
MSC (2000): Primary 34F05, 60G15; Secondary 26C10
DOI: https://doi.org/10.1090/S0002-9939-08-09555-5
Published electronically: August 7, 2008
MathSciNet review: 2439441
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the distribution of complex zeros of Gaussian harmonic polynomials with independent complex coefficients. The expected number of zeros is evaluated by applying a formula of independent interest for the expected absolute value of quadratic forms of Gaussian random variables.


References [Enhancements On Off] (What's this?)

  • [AW05] J.-M. Azaıs and M. Wschebor, On the distribution of the maximum of a Gaussian field with $ d$ parameters, Ann. Appl. Probab. 15 (1A) (2005), 254-278. MR 2115043 (2005k:60117)
  • [AW06] J.-M. Azaıs and M. Wschebor, A self contained proof of the Rice formula for random fields, (2006), preprint available at: http://www.lsp.ups-tsle.fr/ Azais/publi/completeproof.pdf.
  • [BD97] P. Bleher and X. Di, Correlations between zeros of a random polynomial, J. Statist. Phys. 88 (1997), no. 1-2, 269-305. MR 1468385 (98m:60078)
  • [BHS95] D. Bshouty, W. Hengartner and T. Suez, The exact bound of the number of zeros of harmonic polynomials, J. d'Analyse Math. 67 (1995), 207-218. MR 1383494 (97f:30025)
  • [BL04] D. Bshouty and A. Lyzzaik, On Crofoot-Sarason's conjecture for harmonic polynomials, Comput. Methods Funct. Theory 4 (2004), 35-41. MR 2081663 (2005e:30008)
  • [CW03] F. Cucker and M. Wschebor, On the expected condition number of linear programming problems, Numer. Math. 94 (2003), 419-478. MR 1981163 (2005m:90172)
  • [D66] J.E.A. Dunnage, The number of real zeros of a random trigonometric polynomial, Proc. London Math. Soc. (3) 16 (1966), 53-84. MR 0192532 (33:757)
  • [DHL96] P. Duren, W. Hengartner and R.S. Laugesen, The argument principle for harmonic functions, Amer. Math. Monthly 103 (1996), 411-415. MR 1400723 (97f:30002)
  • [EK95] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. 32 (1995), 1-37. MR 1290398 (95m:60082)
  • [Ge03] L. Geyer, Sharp bounds for the valence of certain harmonic polynomials, Proc. Amer. Math. Soc. 136 (2003), no. 2, 549-555. MR 2358495
  • [IZ97] I.Ibragimov and O. Zeitouni, On roots of random polynomials, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2427-2441. MR 1390040 (97h:60050)
  • [Kac43] M. Kac, On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc. 49 (1943), 314-320. MR 0007812 (4:196d)
  • [KN06] D. Khavinson and G. Neumann, On the number of zeros of certain rational harmonic functions, Proc. Amer. Math. Soc. 134 (2006), 1077-1085. MR 2196041 (2007h:26018)
  • [KS03] D. Khavinson and G. Swiatek, On the number of zeros of certain harmonic polynomials, Proc. Amer. Math. Soc. 131 (2003), 409-414. MR 1933331 (2003j:30015)
  • [Ko02] E. Kostlan, On the expected number of real roots of a system of random polynomial equations, Foundations of computational mathematics, 149-188, World Sci. Publishing, River Edge, NJ, 2002. MR 2021981 (2004k:60150)
  • [LW08] W.V. Li and A. Wei, Gaussian integrals for absolute value functions, in preparation.
  • [PV05] Y. Peres and B. Virag, Zeros of the iid Gaussian power series: A conformally invariant determinantal process, Acta Math. 194 (2005), no. 1, 1-35. MR 2231337 (2007m:60150)
  • [S02] T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics 75, Cambridge University Press, Cambridge, 2002. MR 1962935 (2004b:30001)
  • [SV95] L. Shepp and R. Vanderbei, The complex zeros of random polynomials, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4365-4384. MR 1308023 (96a:30006)
  • [T90] Y.L. Tong, The multivariate normal distribution, Springer-Verlag, 1990. MR 1029032 (91g:60021)
  • [Wi98] A.S. Wilmshurst, The valence of harmonic polynomials, Proc. Amer. Math. Soc. 126 (1998), 2077-2081. MR 1443416 (98h:30029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34F05, 60G15, 26C10

Retrieve articles in all journals with MSC (2000): 34F05, 60G15, 26C10


Additional Information

Wenbo V. Li
Affiliation: Department of Mathematical Sciences, 517B Ewing Hall, University of Delaware, Newark, Delaware 19716
Email: wli@math.udel.edu

Ang Wei
Affiliation: Department of Mathematical Sciences, 308 Ewing Hall, University of Delaware, Newark, Delaware 19716
Email: wei@math.udel.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09555-5
Received by editor(s): December 14, 2007
Published electronically: August 7, 2008
Additional Notes: The first author was partially supported by an NSF grant DMS-0505805.
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society