Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Holomorphic $ L^{p}$-functions on coverings of strongly pseudoconvex manifolds


Author: Alexander Brudnyi
Journal: Proc. Amer. Math. Soc. 137 (2009), 227-234
MSC (2000): Primary 32T15; Secondary 32L05, 46E15
DOI: https://doi.org/10.1090/S0002-9939-08-09563-4
Published electronically: August 13, 2008
MathSciNet review: 2439445
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show how to construct holomorphic $ L^{p}$-functions on unbranched coverings of strongly pseudoconvex manifolds. Also, we prove some extension and approximation theorems for such functions.


References [Enhancements On Off] (What's this?)

  • 1. L. Bungart, On analytic fibre bundles I. Holomorphic fibre bundles with infinite dimensional fibres. Topology, 7 (1) (1968), 55-68. MR 0222338 (36:5390)
  • 2. A. Brudnyi, On holomorphic $ L^{2}$-functions on coverings of strongly pseudoconvex manifolds. Publications of RIMS, Kyoto University, 43 (2007), 963-976. MR 2389789
  • 3. A. Brudnyi, Hartogs type theorems for $ CR$ $ L^{2}$-functions on coverings of strongly pseudoconvex manifolds. Nagoya Math. J., 189 (2008), 27-47. MR 2396582
  • 4. A. Brudnyi, On holomorphic functions of slow growth on coverings of strongly pseudoconvex manifolds. J. Funct. Anal., 249 (2007), no. 2, 354-371. MR 2345336
  • 5. A. Brudnyi, Representation of holomorphic functions on coverings of pseudoconvex domains in Stein manifolds via integral formulas on these domains. J. Funct. Anal. 231 (2006), 418-437. MR 2195338 (2006m:32001)
  • 6. H. Cartan, Sur les fonctions de plusieurs variables complexes. Les espaces analytiques. Proc. Intern. Congress Mathematicians Edinburgh 1958, Cambridge Univ. Press, 1960, pp. 33-52. MR 0117763 (22:8537)
  • 7. M. Gromov, G. Henkin and M. Shubin, Holomorphic $ L^{2}$-functions on coverings of pseudoconvex manifolds. GAFA, 8 (1998), 552-585. MR 1631263 (2000d:32058)
  • 8. J. Leiterer, Holomorphic vector bundles and the Oka-Grauert principle. Several complex variables. IV. Algebraic aspects of complex analysis. A translation of Sovremennye problemy matematiki. Fundamental´nye napravleniya, Tom 10, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekn. Inform., Moscow 1986. Encyclopaedia of Mathematical Sciences, 10. Springer-Verlag, Berlin, 1990. MR 894263 (88k:32072)
  • 9. R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris, 243 (1956), 118-121. MR 0079808 (18:149c)
  • 10. W. Rudin, Real and complex analysis. Second edition. McGraw-Hill Series in Higher Mathematics, New York, 1974. MR 0344043 (49:8783)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32T15, 32L05, 46E15

Retrieve articles in all journals with MSC (2000): 32T15, 32L05, 46E15


Additional Information

Alexander Brudnyi
Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Email: albru@math.ucalgary.ca

DOI: https://doi.org/10.1090/S0002-9939-08-09563-4
Keywords: Holomorphic $L^{p}$-function, covering, strictly pseudoconvex manifold, Banach vector bundle
Received by editor(s): December 28, 2007
Published electronically: August 13, 2008
Additional Notes: This research was supported in part by NSERC
Communicated by: Mikhail Shubin
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society