Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Holomorphic $ L^{p}$-functions on coverings of strongly pseudoconvex manifolds


Author: Alexander Brudnyi
Journal: Proc. Amer. Math. Soc. 137 (2009), 227-234
MSC (2000): Primary 32T15; Secondary 32L05, 46E15
Published electronically: August 13, 2008
MathSciNet review: 2439445
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show how to construct holomorphic $ L^{p}$-functions on unbranched coverings of strongly pseudoconvex manifolds. Also, we prove some extension and approximation theorems for such functions.


References [Enhancements On Off] (What's this?)

  • 1. Lutz Bungart, On analytic fiber bundles. I. Holomorphic fiber bundles with infinite dimensional fibers, Topology 7 (1967), 55–68. MR 0222338
  • 2. Alexander Brudnyi, On holomorphic 𝐿² functions on coverings of strongly pseudoconvex manifolds, Publ. Res. Inst. Math. Sci. 43 (2007), no. 4, 963–976. MR 2389789
  • 3. Alexander Brudnyi, Hartogs type theorems for 𝐶𝑅𝐿² functions on coverings of strongly pseudoconvex manifolds, Nagoya Math. J. 189 (2008), 27–47. MR 2396582
  • 4. Alexander Brudnyi, On holomorphic functions of slow growth on coverings of strongly pseudoconvex manifolds, J. Funct. Anal. 249 (2007), no. 2, 354–371. MR 2345336, 10.1016/j.jfa.2007.03.020
  • 5. Alexander Brudnyi, Representation of holomorphic functions on coverings of pseudoconvex domains in Stein manifolds via integral formulas on these domains, J. Funct. Anal. 231 (2006), no. 2, 418–437. MR 2195338, 10.1016/j.jfa.2005.06.004
  • 6. Henri Cartan, Sur les fonctions de plusieurs variables complexes: les espaces analytiques, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 33–52 (French). MR 0117763
  • 7. M. Gromov, G. Henkin, and M. Shubin, Holomorphic 𝐿² functions on coverings of pseudoconvex manifolds, Geom. Funct. Anal. 8 (1998), no. 3, 552–585. MR 1631263, 10.1007/s000390050066
  • 8. Yu. Laĭterer, Holomorphic vector bundles and the Oka-Grauert principle, Current problems in mathematics. Fundamental directions, Vol. 10 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986, pp. 75–121, 283 (Russian). Translated by D. N. Akhiezer. MR 894263
  • 9. Reinhold Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci. Paris 243 (1956), 118–121 (French). MR 0079808
  • 10. Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. McGraw-Hill Series in Higher Mathematics. MR 0344043

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32T15, 32L05, 46E15

Retrieve articles in all journals with MSC (2000): 32T15, 32L05, 46E15


Additional Information

Alexander Brudnyi
Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Email: albru@math.ucalgary.ca

DOI: http://dx.doi.org/10.1090/S0002-9939-08-09563-4
Keywords: Holomorphic $L^{p}$-function, covering, strictly pseudoconvex manifold, Banach vector bundle
Received by editor(s): December 28, 2007
Published electronically: August 13, 2008
Additional Notes: This research was supported in part by NSERC
Communicated by: Mikhail Shubin
Article copyright: © Copyright 2008 American Mathematical Society