Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on the cone restriction conjecture in the cylindrically symmetric case

Author: Shuanglin Shao
Journal: Proc. Amer. Math. Soc. 137 (2009), 135-143
MSC (2000): Primary 42B10, 42B25; Secondary 35L05
Published electronically: August 26, 2008
MathSciNet review: 2439434
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we present two arguments showing that the classical linear adjoint cone restriction conjecture holds for the class of functions supported on the cone and invariant under spatial rotation in all dimensions. The first is based on a dyadic restriction estimate, while the second follows from a strengthening version of the Hausdorff-Young inequality and the Hölder inequality in Lorentz spaces.

References [Enhancements On Off] (What's this?)

  • 1. B. Barcelo Taberner, On the restriction of the Fourier transform to a conical surface, Trans. Amer. Math. Soc. 292 (1985), no. 1, 321-333. MR 805965 (86k:42023)
  • 2. Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275 (58:2349)
  • 3. F. Nicola, Slicing surfaces and Fourier restriction conjecture, arXiv:0804.3696, Proceedings of the Edinburgh Mathematical Society, to appear.
  • 4. S. Shao, Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically symmetric case, arXiv:0706.3759, Revista Matemática Iberoamericana, to appear.
  • 5. E. M. Stein, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, RI, 1979, pp. 3-20. MR 545235 (80m:42027)
  • 6. -, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR 1232192 (95c:42002)
  • 7. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1971, Princeton Mathematical Series, No. 32. MR 0304972 (46:4102)
  • 8. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. MR 0512086 (58:23577)
  • 9. T. Tao, Recent progress on the restriction conjecture, arXiv:math/0311181.
  • 10. -, The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math. J. 96 (1999), no. 2, 363-375. MR 1666558 (2000a:42023)
  • 11. -, Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates, Math. Z. 238 (2001), no. 2, 215-268. MR 1865417 (2003a:42010)
  • 12. -, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359-1384. MR 2033842 (2004m:47111)
  • 13. T. Tao, A. Vargas, and L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), no. 4, 967-1000. MR 1625056 (99f:42026)
  • 14. T. Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153 (2001), no. 3, 661-698. MR 1836285 (2002j:42019)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B10, 42B25, 35L05

Retrieve articles in all journals with MSC (2000): 42B10, 42B25, 35L05

Additional Information

Shuanglin Shao
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
Address at time of publication: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540

Received by editor(s): October 9, 2007
Published electronically: August 26, 2008
Communicated by: Hart F. Smith
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society