Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Vertex cover algebras of unimodular hypergraphs


Authors: Jürgen Herzog, Takayuki Hibi and Ngô Viêt Trung
Journal: Proc. Amer. Math. Soc. 137 (2009), 409-414
MSC (2000): Primary 13D02, 05C65
DOI: https://doi.org/10.1090/S0002-9939-08-09308-8
Published electronically: October 9, 2008
MathSciNet review: 2448558
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that all vertex cover algebras of a hypergraph are standard graded if and only if the hypergraph is unimodular. This has interesting consequences on the symbolic powers of monomial ideals.


References [Enhancements On Off] (What's this?)

  • 1. C. Berge, Hypergraphs. Combinatorics of finite sets, North-Holland, 1989. MR 1013569 (90h:05090)
  • 2. C.A. Escobar, R. Villarreal and Y. Yoshino, Torsion freeness and normality of blowup rings of monomial ideals. Commutative algebra, 69-84, Lect. Notes Pure Appl. Math. 244, Chapman & Hall/CRC, 2006. MR 2184791 (2007c:13005)
  • 3. I. Gitler, C.E. Valencia and R. Villarreal, A note on Rees algebras and the MFMC property, Beiträge Algebra Geom. 48 (2007), No. 1, 141-150. MR 2326406 (2008f:13004)
  • 4. J. Herzog, T. Hibi and N.V. Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007), 304-322. MR 2298826 (2007m:13005)
  • 5. J. Herzog, T. Hibi, N.V. Trung and X. Zheng, Standard graded vertex cover algebras, cycles and leaves, Trans. Amer. Math. Soc. 360 (2008), No. 12, 6231-6249.
  • 6. A. Schrijver, Theory of linear and integer programming, Wiley, 1998. MR 874114 (88m:90090)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13D02, 05C65

Retrieve articles in all journals with MSC (2000): 13D02, 05C65


Additional Information

Jürgen Herzog
Affiliation: Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
Email: juergen.herzog@uni-essen.de

Takayuki Hibi
Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: hibi@math.sci.osaka-u.ac.jp

Ngô Viêt Trung
Affiliation: Institute of Mathematics, Vien Toan Hoc, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
Email: nvtrung@math.ac.vn

DOI: https://doi.org/10.1090/S0002-9939-08-09308-8
Keywords: Vertex cover algebra, unimodular hypergraph, symbolic power, monomial ideal
Received by editor(s): March 18, 2007
Published electronically: October 9, 2008
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society