A metric space with the Haver property whose square fails this property
Authors:
Elzbieta Pol and Roman Pol
Journal:
Proc. Amer. Math. Soc. 137 (2009), 745750
MSC (2000):
Primary 54D20, 54F45, 54E50
Published electronically:
August 25, 2008
MathSciNet review:
2448597
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Haver introduced the following property of metric spaces : for each sequence of positive numbers there exist collections of open subsets of , the union of which covers , such that the members of are pairwise disjoint and every member of has diameter less than . We construct two separable complete metric spaces , with the Haver property such that , generate the same topology on , but fails this property. In particular, the square of a separable complete metric space with the Haver property may fail this property. Our results answer some questions posed by Babinkostova in 2007.
 1.
David
F. Addis and John
H. Gresham, A class of infinitedimensional spaces. I. Dimension
theory and Alexandroff’s problem, Fund. Math.
101 (1978), no. 3, 195–205. MR 521122
(80b:54041)
 2.
Liljana
Babinkostova, When does the Haver property imply selective
screenability?, Topology Appl. 154 (2007),
no. 9, 1971–1979. MR 2319269
(2008b:54038), http://dx.doi.org/10.1016/j.topol.2007.02.004
 3.
R.
H. Bing, Higherdimensional hereditarily
indecomposable continua, Trans. Amer. Math.
Soc. 71 (1951),
267–273. MR 0043452
(13,265c), http://dx.doi.org/10.1090/S00029947195100434525
 4.
James
Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass.,
1966. MR
0193606 (33 #1824)
 5.
Ryszard
Engelking, Theory of dimensions finite and infinite, Sigma
Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995.
MR
1363947 (97j:54033)
 6.
William
E. Haver, A covering property for metric spaces, Topology
Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va.,
1973) Springer, Berlin, 1974, pp. 108–113. Lecture Notes in
Math., Vol. 375. MR 0365504
(51 #1756)
 7.
K.
Kuratowski, Topology. Vol. I, New edition, revised and
augmented. Translated from the French by J. Jaworowski, Academic Press, New
YorkLondon; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
(36 #840)
 8.
A.
Lelek, On the dimensionality of remainders in
compactifications, Dokl. Akad. Nauk SSSR 160 (1965),
534–537 (Russian). MR 0187197
(32 #4651)
 9.
Jan
van Mill, The infinitedimensional topology of function
spaces, NorthHolland Mathematical Library, vol. 64,
NorthHolland Publishing Co., Amsterdam, 2001. MR 1851014
(2002h:57031)
 10.
Jan
van Mill and Roman
Pol, A complete 𝐶space whose square is strongly
infinitedimensional, Israel J. Math. 154 (2006),
209–220. MR 2254540
(2007h:54008), http://dx.doi.org/10.1007/BF02773606
 11.
Elżbieta
Pol, A weakly infinitedimensional space
whose product with the irrationals is strongly
infinitedimensional, Proc. Amer. Math.
Soc. 98 (1986), no. 2, 349–352. MR 854045
(88a:54083), http://dx.doi.org/10.1090/S00029939198608540450
 12.
E. Pol and R. Pol, On metric spaces with the Haver property which are Menger spaces, preprint.
 13.
Leonard
R. Rubin, R.
M. Schori, and John
J. Walsh, New dimensiontheory techniques for constructing
infinitedimensional examples, General Topology Appl.
10 (1979), no. 1, 93–102. MR 519716
(80e:54049)
 1.
 D. F. Addis and J. H. Gresham, A class of infinite dimensional spaces. Part I: Dimension theory and Alexandroff's problem, Fund. Math. 101 (3) (1978), 195205. MR 0521122 (80b:54041)
 2.
 L. Babinkostova, When does the Haver property imply selective screenability?, Top. Appl. 154 (2007), 19711979. MR 2319269
 3.
 R. H. Bing, Higherdimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267273. MR 0043452 (13:265c)
 4.
 J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. MR 0193606 (33:1824)
 5.
 R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Berlin, 1989. MR 1363947 (97j:54033)
 6.
 W. E. Haver, A Covering Property for Metric Spaces, Lecture Notes in Mathematics, vol. 375, Springer, 1974, 108113. MR 0365504 (51:1756)
 7.
 K. Kuratowski, Topology I, Academic Press and PWN, New York and London, 1966. MR 0217751 (36:840)
 8.
 A. Lelek, On the dimension of remainders in compactifications (Russian), Soviet Math. Dokl. 6 (1965), 136140. MR 0187197 (32:4651)
 9.
 J. van Mill, The InfiniteDimensional Topology of Function Spaces, NorthHolland, Amsterdam, 2001. MR 1851014 (2002h:57031)
 10.
 J. van Mill and R. Pol, A complete Cspace whose square is strongly infinitedimensional, Israel Journ. Math. 154 (2006), 209220. MR 2254540 (2007h:54008)
 11.
 E. Pol, A weakly infinitedimensional space whose product with the irrationals is strongly infinitedimensional, Proc. AMS 98 (1986), 349352. MR 0854045 (88a:54083)
 12.
 E. Pol and R. Pol, On metric spaces with the Haver property which are Menger spaces, preprint.
 13.
 L. Rubin, R. M. Schori and J. J. Walsh, New dimensiontheory techniques for constructing infinitedimensional examples, General Top. Appl. 10 (1979), 93102. MR 0519716 (80e:54049)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
54D20,
54F45,
54E50
Retrieve articles in all journals
with MSC (2000):
54D20,
54F45,
54E50
Additional Information
Elzbieta Pol
Affiliation:
Institute of Mathematics, University of Warsaw, Banacha 2, 02097 Warszawa, Poland
Email:
pol@mimuw.edu.pl
Roman Pol
Affiliation:
Institute of Mathematics, University of Warsaw, Banacha 2, 02097 Warszawa, Poland
Email:
pol@mimuw.edu.pl
DOI:
http://dx.doi.org/10.1090/S0002993908095117
PII:
S 00029939(08)095117
Keywords:
Haver property,
property $C$,
product spaces.
Received by editor(s):
September 24, 2007
Received by editor(s) in revised form:
January 25, 2008
Published electronically:
August 25, 2008
Additional Notes:
The first author was partially supported by MNiSW Grant No. N201 034 31/2717
Communicated by:
Alexander N. Dranishnikov
Article copyright:
© Copyright 2008
American Mathematical Society
