Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Milnor's invariants and self $ C_{k}$-equivalence


Authors: Thomas Fleming and Akira Yasuhara
Journal: Proc. Amer. Math. Soc. 137 (2009), 761-770
MSC (2000): Primary 57M25
DOI: https://doi.org/10.1090/S0002-9939-08-09521-X
Published electronically: August 28, 2008
MathSciNet review: 2448599
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It has long been known that a Milnor invariant with no repeated index is an invariant of link homotopy. We show that Milnor's invariants with repeated indices are invariants not only of isotopy, but also of self $ C_{k}$-equivalence. Here self $ C_{k}$-equivalence is a natural generalization of link homotopy based on certain degree $ k$ clasper surgeries, which provides a filtration of link homotopy classes.


References [Enhancements On Off] (What's this?)

  • 1. Dror Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995), no. 1, 13-32. MR 1321289 (96b:57004)
  • 2. Tim D. Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 84 (1990), no. 427. MR 1042041 (91c:57005)
  • 3. Nathan Habegger and Xiao-Song Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990), no. 2, 389-419. MR 1026062 (91e:57015)
  • 4. Nathan Habegger and Gregor Masbaum, The Kontsevich integral and Milnor's invariants, Topology 39 (2000), no. 6, 1253-1289. MR 1783857 (2002b:57011)
  • 5. Kazuo Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83 (electronic). MR 1735632 (2001g:57020)
  • 6. Xiao-Song Lin, Power series expansions and invariants of links, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 184-202. MR 1470727 (98i:57014)
  • 7. Jean-Baptiste Meilhan and Akira Yasuhara, On $ C_n$-moves for links, preprint.
  • 8. John Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177-195. MR 0071020 (17:70e)
  • 9. -, Isotopy of links. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, pp. 280-306. MR 0092150 (19:1070c)
  • 10. H. A. Miyazawa and Akira Yasuhara, Classification of $ n$-component Brunnian links up to $ {C}_{n}$-move, Topology Appl. 153 (2006), 1643-1650. MR 2227018 (2007b:57013)
  • 11. Yasutaka Nakanishi, Delta link homotopy for two component links, Topology Appl. 121 (2002), 169-182. MR 1903689 (2003i:57015)
  • 12. Yasutaka Nakanishi and Yoshiyuki Ohyama, Delta link homotopy for two component links. II, J. Knot Theory Ramifications 11 (2002), no. 3, 353-362, Knots 2000 Korea, Vol. 1 (Yongpyong). MR 1905690 (2003i:57014)
  • 13. -, Delta link homotopy for two component links. III, J. Math. Soc. Japan 55 (2003), no. 3, 641-654. MR 1978214 (2004a:57009)
  • 14. Tetsuo Shibuya, Self $ \Delta$-equivalence of ribbon links, Osaka J. Math. 33 (1996), no. 3, 751-760. MR 1424684 (97k:57012)
  • 15. Tetsuo Shibuya and Akira Yasuhara, Boundary links are self delta-equivalent to trivial links, Math. Proc. Cambridge Philos. Soc. 143 (2007), 449-458. MR 2364661
  • 16. -, Self $ {C}_{k}$-move, quasi self $ {C}_{k}$-move and the Conway potential function for links, J. Knot Theory Ramifications 13 (2004), no. 7, 877-893. MR 2101233 (2006a:57009)
  • 17. Kouki Taniyama and Akira Yasuhara, Band description of knots and Vassiliev invariants, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 325-343. MR 1912405 (2003m:57034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M25

Retrieve articles in all journals with MSC (2000): 57M25


Additional Information

Thomas Fleming
Affiliation: Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112
Email: tfleming@math.ucsd.edu

Akira Yasuhara
Affiliation: Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
Email: yasuhara@u-gakugei.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09521-X
Received by editor(s): December 4, 2006
Received by editor(s) in revised form: February 4, 2008
Published electronically: August 28, 2008
Additional Notes: The first author was supported by a Post-Doctoral Fellowship for Foreign Researchers ($#$PE05003) from the Japan Society for the Promotion of Science.
The second author is partially supported by a Grant-in-Aid for Scientific Research (C) ($#$18540071) of the Japan Society for the Promotion of Science.
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society