Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hamiltonian elliptic dynamics on symplectic $ 4$-manifolds


Authors: Mário Bessa and João Lopes Dias
Journal: Proc. Amer. Math. Soc. 137 (2009), 585-592
MSC (2000): Primary 37J25, 37D30; Secondary 37C27
DOI: https://doi.org/10.1090/S0002-9939-08-09578-6
Published electronically: August 20, 2008
MathSciNet review: 2448579
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider $ C^2$-Hamiltonian functions on compact $ 4$-dimensional symplectic manifolds to study the elliptic dynamics of the Hamiltonian flow, namely the so-called Newhouse dichotomy. We show that for any open set $ U$ intersecting a far from Anosov regular energy surface, there is a nearby Hamiltonian having an elliptic closed orbit through $ U$. Moreover, this implies that, for far from Anosov regular energy surfaces of a $ C^2$-generic Hamiltonian, the elliptic closed orbits are generic.


References [Enhancements On Off] (What's this?)

  • 1.
    A. Arbieto and C. Matheus,
    A pasting lemma and some applications for conservative systems,
    Ergod. Th. & Dynam. Sys. 27, 5 (2007), 1399-1417. MR 2358971
  • 2.
    M.-C. Arnaud,
    The generic symplectic $ C^1$-diffeomorphisms of four-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point,
    Ergod. Th. & Dynam. Sys. 22, 6 (2002), 1621-1639. MR 1944396 (2003k:37080)
  • 3.
    M. Bessa,
    The Lyapunov exponents of generic zero divergence three-dimensional vector fields,
    Ergod. Th. & Dynam. Sys. 27, 5 (2007), 1445-1472. MR 2358973
  • 4.
    M. Bessa and J. Lopes Dias,
    Generic dynamics of $ 4$-dimensional $ C^2$ Hamiltonian systems,
    Commun. Math. Phys 281, 3 (2008), 597-619.
  • 5.
    M. Bessa and P. Duarte,
    Abundance of elliptical dynamics on conservative $ 3$-flows,
    Dynamical Systems-An International Journal (to appear).
  • 6.
    J. Bochi,
    Genericity of zero Lyapunov exponents,
    Ergod. Th. & Dynam. Sys. 22, 6 (2002), 1667-1696. MR 1944399 (2003m:37035)
  • 7. J. Bochi and B. Fayad,
    Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for $ SL(2,R)$ cocycles,
    Bull. Braz. Math. Soc. 37 (2006), 307-349. MR 2267781 (2007m:37121)
  • 8.
    C. Bonatti, L. Díaz and M. Viana,
    Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective,
    Encycl. of Math. Sci. 102. Math. Phys. 3. Springer-Verlag, Berlin, 2005. MR 2105774 (2005g:37001)
  • 9. V. Horita and A. Tahzibi.
    Partial hyperbolicity for symplectic diffeomorphisms.
    Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 5 (2006), 641-661. MR 2259610 (2007j:37047)
  • 10.
    S. Newhouse,
    Quasi-elliptic periodic points in conservative dynamical systems,
    Amer. J. Math. 99 (1977), 1061-1087. MR 0455049 (56:13290)
  • 11.
    C. Pugh and C. Robinson,
    The $ C\sp 1$ closing lemma, including Hamiltonians,
    Ergod. Th. & Dynam. Sys. 3 (1983), 261-313. MR 742228 (85m:58106)
  • 12.
    R. C. Robinson,
    Generic properties of conservative systems, I and II,
    Amer. J. Math. 92 (1970), 562-603 and 897-906. MR 0273640 (42:8517), MR 0279403 (43:5125)
  • 13.
    R. Saghin and Z. Xia,
    Partial hyperbolicity or dense elliptical periodic points for $ C^1$-generic symplectic diffeomorphisms,
    Trans. Amer. Math. Soc. 358, 11 (2006), 5119-5138. MR 2231887 (2007d:37044)
  • 14.
    T. Vivier,
    Robustly transitive $ 3$-dimensional regular energy surfaces are Anosov,
    Institut de Mathématiques de Bourgogne, Dijon, Preprint 412 (2005). http://math.u- bourgogne.fr/topo/prepub/pre05.html

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37J25, 37D30, 37C27

Retrieve articles in all journals with MSC (2000): 37J25, 37D30, 37C27


Additional Information

Mário Bessa
Affiliation: Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
Email: bessa@fc.up.pt

João Lopes Dias
Affiliation: Departamento de Matemática, ISEG, Universidade Técnica de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
Email: jldias@iseg.utl.pt

DOI: https://doi.org/10.1090/S0002-9939-08-09578-6
Received by editor(s): January 23, 2008
Published electronically: August 20, 2008
Communicated by: Bryna Kra
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society