Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The escaping set of a quasiregular mapping


Authors: Walter Bergweiler, Alastair Fletcher, Jim Langley and Janis Meyer
Journal: Proc. Amer. Math. Soc. 137 (2009), 641-651
MSC (2000): Primary 30C65, 30C62; Secondary 37F10.
DOI: https://doi.org/10.1090/S0002-9939-08-09609-3
Published electronically: September 4, 2008
MathSciNet review: 2448586
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if the maximum modulus of a quasiregular mapping $ f: \mathbb{R}^N \to \mathbb{R}^N$ grows sufficiently rapidly, then there exists a nonempty escaping set $ I(f)$ consisting of points whose forward orbits under iteration of $ f$ tend to infinity. We also construct a quasiregular mapping for which the closure of $ I(f)$ has a bounded component. This stands in contrast to the situation for entire functions in the complex plane, for which all components of the closure of $ I(f)$ are unbounded and where it is in fact conjectured that all components of $ I(f)$ are unbounded.


References [Enhancements On Off] (What's this?)

  • 1. W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), 151-188. MR 1216719 (94c:30033)
  • 2. W. Bergweiler, Fixed points of composite entire and quasiregular maps, Ann. Acad. Sci. Fenn. Math. 31 (2006), 523-540. MR 2248829 (2007g:30043)
  • 3. W. Bergweiler, P.J. Rippon and G.M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. London Math. Soc. 2008; doi: 10.1112/plms/pdn007.
  • 4. P. Dominguez, Dynamics of transcendental meromorphic functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), 225-250. MR 1601879 (99b:30031)
  • 5. A. Eremenko, On the iteration of entire functions, Dynamical Systems and Ergodic Theory, Banach Center Publ. 23, Polish Scientific Publishers, Warsaw, 1989, 339-345. MR 1102727 (92c:30027)
  • 6. W.K. Hayman, The local growth of power series: A survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317-358. MR 0385095 (52:5965)
  • 7. A. Hinkkanen, G.J. Martin and V. Mayer, Local dynamics of uniformly quasiregular mappings, Math. Scand. 95 (2004), 80-100. MR 2091483 (2005f:37094)
  • 8. T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Clarendon Press, Oxford University Press, New York, 2001. MR 1859913 (2003c:30001)
  • 9. O. Martio, S. Rickman and J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970), 1-13. MR 0267093 (42:1995)
  • 10. R. Miniowitz, Normal families of quasimeromorphic mappings, Proc. Amer. Math. Soc. 84 (1982), 35-43. MR 633273 (83c:30026)
  • 11. M.H.A. Newman, Elements of the topology of plane sets of points, Cambridge, At the University Press, 1951. MR 0044820 (13:483a)
  • 12. L. Rempe, On a question of Eremenko concerning escaping components of entire functions, Bull. London Math. Soc. 39 (2007), 661-666. MR 2346947
  • 13. S. Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100-117. MR 583633 (81m:30030)
  • 14. S. Rickman, The analogue of Picard's theorem for quasiregular mappings in dimension three, Acta Math. 154 (1985), 195-242. MR 781587 (86h:30039)
  • 15. S. Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete 26, Springer-Verlag, Berlin, 1993. MR 1238941 (95g:30026)
  • 16. P.J. Rippon and G.M. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math. Soc. 133 (2005), 1119-1126. MR 2117213 (2005j:37069)
  • 17. H. Siebert, Fixed points and normal families of quasiregular mappings, J. Analyse Math. 98 (2006), 145-168. MR 2254483 (2007e:30023)
  • 18. N. Steinmetz, Rational iteration, de Gruyter Studies in Mathematics 16, Walter de Gruyter, Berlin-New York, 1993. MR 1224235 (94h:30035)
  • 19. L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817. MR 0379852 (52:757)
  • 20. L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), 215-230. MR 1624862 (99g:30048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C65, 30C62, 37F10.

Retrieve articles in all journals with MSC (2000): 30C65, 30C62, 37F10.


Additional Information

Walter Bergweiler
Affiliation: Mathematisches Seminar, Christian–Albrechts–Universität zu Kiel, Ludewig–Meyn–Str. 4, D–24098 Kiel, Germany
Email: bergweiler@math.uni-kiel.de

Alastair Fletcher
Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
Email: alastair.fletcher@nottingham.ac.uk

Jim Langley
Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
Email: jkl@maths.nott.ac.uk

Janis Meyer
Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
Email: janis.meyer@maths.nottingham.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-08-09609-3
Received by editor(s): February 7, 2008
Published electronically: September 4, 2008
Additional Notes: This research was supported by the G.I.F, the German-Israeli Foundation for Scientific Research and Development, Grant G-809-234.6/2003, and the EU Research Training Network CODY (first author); EPSRC grant RA22AP (second and third authors); the ESF Research Networking Programme HCAA (first and third authors); and DFG grant ME 3198/1-1 (fourth author).
Communicated by: Mario Bonk
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society