On amalgamations of Heegaard splittings with high distance

Authors:
Guoqiu Yang and Fengchun Lei

Journal:
Proc. Amer. Math. Soc. **137** (2009), 723-731

MSC (2000):
Primary 57M99

DOI:
https://doi.org/10.1090/S0002-9939-08-09642-1

Published electronically:
September 9, 2008

MathSciNet review:
2448595

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact, orientable 3-manifold and an essential closed surface which cuts into and . Suppose that has a Heegaard splitting with distance , . Then , and the amalgamation of and is the unique minimal Heegaard splitting of up to isotopy.

**1.**D. Bachman and R. Derby-Talbot,*Degeneration of Heegaard genus, a survey*, arXiv:math.GT/0606383v3, preprint.**2.**D. Bachman, S. Schleimer and E. Sedgwick,*Sweepouts of amalgamated -manifolds*, Algebr. Geom. Topol.**6**(2006), 171-194. MR**2199458 (2006k:57057)****3.**A. J. Casson and C. McA. Gordon,*Reducing Heegaard splittings*, Topology and Its Applications**27**(1987), 275-283. MR**918537 (89c:57020)****4.**K. Harshorn,*Heegaard splittings of Haken manifolds have bounded distance*, Pacific J. Math.**204**(2002), 61-75. MR**1905192 (2003a:57037)****5.**J. Hempel,*-manifolds*, Annals of Math. Studies,**86**, Princeton University Press, 1976. MR**0415619 (54:3702)****6.**J. Hempel,*-manifolds as viewed from the curve complex*, Topology**40**(2001), 631-657. MR**1838999 (2002f:57044)****7.**W. Jaco,*Lectures on three manifold topology*, CBMS Regional Conference Series in Mathematics,**43**, Amer. Math. Soc., 1980. MR**565450 (81k:57009)****8.**T. Kobayashi, R. Qiu, Y. Rieck, and S. Wang,*Separating incompressible surfaces and stabilizations of Heegaard splittings*, Math. Proc. Camb. Phil. Soc.**137**(2004), 633-643. MR**2103921 (2006c:57013)****9.**T. Kobayashi and R. Qiu,*The amalgamation of high distance Heegaard splittings is always efficient*, Math. Ann., Online: DOI 10.1007/s00208-008-0214-7.**10.**M. Lackenby,*The Heegaard genus of amalgamated -manifolds*, Geom. Dedicata**109**(2004), 139-145. MR**2113191 (2005i:57021)****11.**T. Li,*On the Heegaard splittings of amalgamated -manifolds*, arXiv:math.GT/0701395, preprint.**12.**M. Scharlemann and A. Thompson,*Thin position for -manifolds*, Contemporary Math.**164**, Amer. Math. Soc., 1994, 231-238. MR**1282766 (95e:57032)****13.**M. Scharlemann,*Local detection of strongly irreducible Heegaard splittings*, Topology and Its Applications**90**(1998), 135-147. MR**1648310 (99h:57040)****14.**M. Scharlemann and M. Tomova,*Alternate Heegaard genus bounds distance*, Geom. Topol.**10**(2006), 593-617. MR**2224466 (2007b:57040)****15.**J. Schultens,*Additivity of tunnel number for small knots*, Comment. Math. Helv.**75**(2000), 353-367. MR**1793793 (2001i:57012)****16.**J. Schultens,*The classification of Heegaard splittings for (compact orientable surfaces)*, Proc. London Math. Soc.**67**(1993), 425-448. MR**1226608 (94d:57043)****17.**J. Souto,*Distance in the curve complex and Heegaard genus*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
57M99

Retrieve articles in all journals with MSC (2000): 57M99

Additional Information

**Guoqiu Yang**

Affiliation:
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, Heilongjiang Province, People’s Republic of China

Email:
gqyang@hit.edu.cn

**Fengchun Lei**

Affiliation:
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, Liaoning Province, People’s Republic of China

Email:
ffcclei@yahoo.com.cn

DOI:
https://doi.org/10.1090/S0002-9939-08-09642-1

Keywords:
Amalgamation,
distance of Heegaard splitting,
minimal Heegaard splitting

Received by editor(s):
August 6, 2007

Published electronically:
September 9, 2008

Additional Notes:
The second author is supported in part by a grant (No. 15071034) of NFSC and a grant (No. 893322) of DLUT

Communicated by:
Daniel Ruberman

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.