Abelian ideals and cohomology of symplectic type

Author:
Li Luo

Journal:
Proc. Amer. Math. Soc. **137** (2009), 479-485

MSC (2000):
Primary 17B05, 17B56; Secondary 17B20, 17B30

DOI:
https://doi.org/10.1090/S0002-9939-08-09685-8

Published electronically:
September 29, 2008

MathSciNet review:
2448567

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Borel subalgebra of the symplectic Lie algebra and let be the corresponding maximal nilpotent subalgebra. We find a connection between the abelian ideals of and the cohomology of with trivial coefficients. Using this connection, we are able to enumerate the number of abelian ideals of with given dimension via the Poincaré polynomials of Weyl groups of types and .

**1.**R. Bott,*Homogeneous vector bundles*, Ann. of Math. (2)(1957), 203-248. MR**66****0089473 (19:681d)****2.**P. Cellini and P. Papi,*Abelian ideals of Borel subalgebras and affine Weyl groups*, Adv. Math.**187**(2004), 320-361. MR**2078340 (2005e:17012)****3.**J. E. Humphreys,*Reflection Groups and Coxeter Groups*, Cambridge University Press, 1990. MR**1066460 (92h:20002)****4.**B. Kostant,*Lie algebra cohomology and the generalized Borel-Weil theorem*, Ann. of Math. (2)**74**(1961), 329-387. MR**0142696 (26:265)****5.**B. Kostant,*The set of abelian ideals of a Borel subalgebras, Cartan decompositions, and discrete series representations*, Int. Math. Res. Not.**5**(1998), 225-252. MR**1616913 (99c:17010)****6.**B. Kostant,*Powers of the Euler product and commutative subalgebras of a complex Lie algebra*, Invent. Math.**158**(2004), 181-226. MR**2090363 (2005m:17007)****7.**D. Panyushev,*Abelian ideals of a Borel subalgebra and long positive roots*, Int. Math. Res. Not. (2003), 1889-1913. MR**1995141 (2004g:17006)****8.**D. Panyushev and G. Röhrle,*Spherical orbits and abelian ideals*, Adv. Math.**159**(2001), 229-246. MR**1825058 (2002c:20073)****9.**I. Schur,*Zur Theorie der vertauschbaren Matrizen*, J. Reine Angew. Math.**130**(1905), 66-76.**10.**R. Suter,*Abelian ideals in a Borel subalgebra of a complex simple Lie algebra*, Invent. Math.**156**(2004), 175-221. MR**2047661 (2005b:17020)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
17B05,
17B56,
17B20,
17B30

Retrieve articles in all journals with MSC (2000): 17B05, 17B56, 17B20, 17B30

Additional Information

**Li Luo**

Affiliation:
Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Email:
luoli@amss.ac.cn

DOI:
https://doi.org/10.1090/S0002-9939-08-09685-8

Keywords:
Abelian ideal,
cohomology,
symplectic Lie algebra,
Weyl group,
Poincar\'e polynomial.

Received by editor(s):
January 24, 2008

Published electronically:
September 29, 2008

Communicated by:
Gail R. Letzter

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.