Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Weil-Petersson geometry of the moduli space of Riemann surfaces


Author: Lee-Peng Teo
Journal: Proc. Amer. Math. Soc. 137 (2009), 541-552
MSC (2000): Primary 30F60, 32G15
DOI: https://doi.org/10.1090/S0002-9939-08-09692-5
Published electronically: September 17, 2008
MathSciNet review: 2448574
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 2007, Z. Huang showed that in the thick part of the moduli space $ \mathcal{M}_g$ of compact Riemann surfaces of genus $ g$, the sectional curvature of the Weil-Petersson metric is bounded below by a constant depending on the injectivity radius, but independent of the genus $ g$. In this article, we prove this result by a different method. We also show that the same result holds for Ricci curvature. For the universal Teichmüller space equipped with a Hilbert structure induced by the Weil-Petersson metric, we prove that its sectional curvature is bounded below by a universal constant.


References [Enhancements On Off] (What's this?)

  • 1. Lars V. Ahlfors, Curvature properties of Teichmüller's space, J. Analyse Math. 9 (1961/1962), 161-176. MR 0136730 (25:192)
  • 2. S. Bochner, Curvature in Hermitian metric, Bull. Amer. Math. Soc. 53 (1947), 179-195. MR 0019983 (8:490d)
  • 3. Zheng Huang, Asymptotic flatness of the Weil-Petersson metric on Teichmüller space, Geom. Dedicata 110 (2005), 81-102. MR 2136021 (2007b:32023)
  • 4. Zheng Huang, The Weil-Petersson geometry on the thick part of the moduli space of Riemann surfaces, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3309-3316 (electronic). MR 2322763 (2008f:30093)
  • 5. Zheng Huang, On asymptotic Weil-Petersson geometry of Teichmüller space of Riemann surfaces Asian J. Math. 11 (2007), 459-484. MR 2372726
  • 6. Jürgen Jost, Harmonic maps and curvature computations in Teichmüller theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 1, 13-46. MR 1127695 (93a:32033)
  • 7. Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. I, J. Differential Geom. 68 (2004), no. 3, 571-637. MR 2144543 (2007g:32009)
  • 8. Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. II, J. Differential Geom. 69 (2005), no. 1, 163-216. MR 2169586 (2007g:32010)
  • 9. Curtis T. McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math. (2) 151 (2000), no. 1, 327-357. MR 1745010 (2001m:32032)
  • 10. H. L. Royden, Intrinsic metrics on Teichmüller space, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que., 1975, pp. 217-221. MR 0447636 (56:5946)
  • 11. Georg Schumacher, Harmonic maps of the moduli space of compact Riemann surfaces, Math. Ann. 275 (1986), no. 3, 455-466. MR 858289 (87m:58045)
  • 12. Leon A. Takhtajan and Lee-Peng Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861, viii+119. MR 2251887 (2007e:32011)
  • 13. Stefano Trapani, On the determinant of the bundle of meromorphic quadratic differentials on the Deligne-Mumford compactification of the moduli space of Riemann surfaces, Math. Ann. 293 (1992), no. 4, 681-705. MR 1176026 (93g:58157)
  • 14. A. J. Tromba, On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric, Manuscripta Math. 56 (1986), no. 4, 475-497. MR 860734 (88c:32034)
  • 15. P. M. H. Wilson, Sectional curvatures of Kähler moduli, Math. Ann. 330 (2004), no. 4, 631-664. MR 2102306 (2006d:32028)
  • 16. Scott A. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986), no. 1, 119-145. MR 842050 (87j:32070)
  • 17. Scott A. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space, Surveys in Differential Geometry, Vol. VIII (Boston, MA, 2002), Surv. Differ. Geom., VIII, Int. Press, Somerville, MA, 2003, pp. 357-393. MR 2039996 (2005h:32032)
  • 18. Sumio Yamada, On the geometry of Weil-Petersson completion of Teichmüller spaces, Math. Res. Lett. 11 (2004), no. 2-3, 327-344. MR 2067477 (2005h:32033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30F60, 32G15

Retrieve articles in all journals with MSC (2000): 30F60, 32G15


Additional Information

Lee-Peng Teo
Affiliation: Faculty of Information Technology, Multimedia University, Jalan Multimedia,Cyberjaya, 63100, Selangor Darul Ehsan, Malaysia
Email: lpteo@mmu.edu.my

DOI: https://doi.org/10.1090/S0002-9939-08-09692-5
Keywords: Moduli space, Riemann surface, Weil--Petersson metric, curvature
Received by editor(s): December 20, 2007
Published electronically: September 17, 2008
Additional Notes: The author would like to thank the Ministry of Science, Technology and Innovation of Malaysia for funding this project under eScienceFund 06-02-01-SF0021.
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society