ON THE RADIUS OF ANALYTICITY OF SOLUTIONS TO THE THREE-DIMENSIONAL EULER EQUATIONS

IGOR KUKAVICA AND VLAD VICOL

(Communicated by Matthew J. Gursky)

Abstract. We address the problem of analyticity of smooth solutions u of the incompressible Euler equations. If the initial datum is real-analytic, the solution remains real-analytic as long as $\int_0^t \|\nabla u(\cdot, s)\|_{L^\infty} \, ds < \infty$. Using a Gevrey-class approach we obtain lower bounds on the radius of space analyticity which depend algebraically on $\exp \int_0^t \|\nabla u(\cdot, s)\|_{L^\infty} \, ds$. In particular, we answer in the positive a question posed by Levermore and Oliver.

1. Introduction

The existence and uniqueness of H^r-solutions, for $r > 3/2 + 1$, of the three-dimensional incompressible Euler equations on a maximal time interval $[0, T)$, for some $T \in (0, \infty]$, is classical [EB, Ka, MB, T]. Beale, Kato, and Majda [BKM] proved that if the maximal time of existence T is finite, the vorticity ω satisfies $\int_0^T \|\omega(\cdot, t)\|_{L^\infty} = \infty$. In two dimensions it is well-known (cf. [J]) that T can be taken arbitrarily large.

It is common to write the initial value problem associated to the Euler equations in terms of the vorticity $\omega = \text{curl} u$:

1.1 $\partial_t \omega + u \cdot \nabla \omega = \omega \cdot \nabla u$,

1.2 $u = K \ast \omega$,

1.3 $\omega(0) = \omega_0 = \text{curl} u_0$,

where K is the Biot-Savart kernel. Here we work in the periodic setting; that is, u and ω are T^3-periodic functions with $\int_{T^3} u = 0$, where $T^3 = [0, 2\pi]^3$. The case of the whole space can be treated with minor modifications.

In three dimensions, if the initial datum ω_0 is analytic, Bardos [B] and Benachour [Be] obtained lower bounds on the radius of analyticity of the solution that vanish in finite time. In [BB] they also proved persistency; i.e. the solution remains analytic as long as it exists in a certain Hölder-type space on the complexified domain. The proof is an implicit argument which does not yield an explicit rate of decay for the radius of analyticity of the solution. In the two-dimensional case, using the absence of the vorticity stretching term, Bardos, Benachour, and Zerner [BBZ] established an explicit bound for the rate of decay of the analyticity radius, which is $C \exp(-C \exp(Ct))$, for a suitable positive constant C. The local propagation of
analyticity was considered by Baouendi and Goulaouic [BG], Alinhac and Metivier [AM] and Le Bail [LB].

Using a Fourier space method, Levermore and Oliver [LO] proved analyticity for a generalized Euler equation in two dimensions. Their proof extends to higher dimensions and shows that the uniform analyticity radius of the solution decays exponentially in \(\| \omega(\cdot, t) \|_{H^r} \), where \(r \) is large enough. In two dimensions, this radius decays exponentially faster than the radius obtained by Bardos and Benachour. In [LO, Remark 4] the authors pose the question of whether the Fourier-based method can be employed to recover the 2D-rate obtained by Bardos, Benachour, and Zerner.

We answer this question in the positive. Moreover, in the case of the 3D Euler equations, we obtain lower bounds on the rate of decay of the uniform space analyticity radius that depend only algebraically on \(\| \omega(\cdot, t) \|_{H^r} \) and \(\exp(\int_0^t \| \nabla u(\cdot, s) \|_{L^\infty} ds) \), improving previously known results. The results hold for the non-analytic Gevrey classes (cf. Remark 2.2 below).

The aforementioned Fourier space method, namely the Gevrey-class regularity, was introduced by Foias and Temam [FT] to prove the analyticity of solutions for the Navier-Stokes equations. This technique is general and has been applied to other equations [BGK1, BGK2, CTV, FT1, GK1, K1, LO, OT]. Analyticity in \(L^p \) for the Navier-Stokes equations was established in [GK2, K2, L1, L2].

Section 2 contains the statement and the proof of our main result. The following are valid in any dimension \(d \geq 2 \), but we only state the results for \(d = 3 \). The core of the proof of Theorem 2.1 is Lemma 2.5, whose proof is given in Section 3.

2. THE ANALYTICITY THEOREM

The following is our main theorem.

Theorem 2.1. If \(u_0 \) is divergence-free, and \(\omega_0 = \text{curl} u_0 \) is real-analytic on \(T^3 \), then the unique solution \(\omega \in C(0, T; H^r(T^3)) \), with \(r > 7/2 \), to the vorticity equations (1.1)–(1.3) is real-analytic for all \(t < T \), where \(T \in (0, \infty] \) is the maximal time of existence. Furthermore, the uniform space analyticity radius \(\tau(t) \) of the solution \(\omega(\cdot, t) \) satisfies

\[
\tau(t) \geq C_1 \exp \left(-C_2 \int_0^t \| \nabla u(\cdot, s) \|_{L^\infty} ds \right) \left(1 + t^2 \right)^{-1},
\]

where \(C_2 > 0 \) is a constant depending only on \(r \), and \(C_1 > 0 \) has additional dependence on \(\omega_0 \) (cf. (2.6) below).

Remark 2.2. The theorem remains valid in any dimension \(d \geq 2 \), with the modification \(r > (d+4)/2 \). This is due to the fact that for \(d = 2 \) the term \(\omega \cdot \nabla u \) vanishes, and that for \(d \geq 4 \) the vorticity formulation of the Euler equations is similar to (1.1)–(1.3).

Remark 2.3. In dimension 2, we can take \(T \) arbitrarily large and therefore the solutions remain analytic for all time. In this case \(\| \nabla u(\cdot, t) \|_{L^\infty} \) increases with a rate at most \(C \exp(\text{Ct}) \) for some positive constant \(C \), while \(\| \omega(\cdot, t) \|_{H^r} \) increases with a rate at most \(C \exp(\text{Cexp(\text{Ct})}) \). This allows us to recover the 2D-rate of decay given by Bardos, Benachour and Zerner [BB, BBZ].
The functional setting for the present paper is as follows. For fixed \(r, \tau \geq 0 \) and \(m = 1, 2, 3 \), we define
\[
D(\Lambda_m^r e^{r\Lambda_m}) = \left\{ \omega \in H^r({\mathbb T}^3) : \text{div} \omega = 0, \right. \\
\left. \|\Lambda_m^r e^{r\Lambda_m} \omega\|_{L^2}^2 = (2\pi)^3 \sum_{k \in {\mathbb Z}^3} |k_m| 2^r e^{2r|k_m|} |\hat{\omega}_k|^2 < \infty \right\},
\]
where
\[
H^r({\mathbb T}^3) = \left\{ \omega(x) = \sum_{k \in {\mathbb Z}^3} \hat{\omega}_k e^{ikx} : \hat{\omega}_0 = 0, \hat{\omega}_k = \hat{\omega}_{-k}, \right. \\
\left. ||\omega||_{H^r} = (2\pi)^3 \sum_{k \in {\mathbb Z}^3} (1 + |k|^2)^r |\hat{\omega}_k|^2 < \infty \right\}
\]
is the periodic Sobolev space. For \(r, \tau \geq 0 \) define the normed spaces \(Y_{r, \tau} \subset X_{r, \tau} \) by
\[
X_{r, \tau} = \cap_{m=1}^3 D(\Lambda_m^r e^{r\Lambda_m}), \quad ||\omega||_{X_{r, \tau}} = \sum_{m=1}^3 ||\Lambda_m^r e^{r\Lambda_m} \omega||_{L^2}^2,
\]
and \(Y_{r, \tau} = X_{r+1/2, \tau} \). In the following lemma we prove that the above defined spaces consist of real-analytic functions.

Lemma 2.4. If \(\omega \in X_{r, \tau} \) for \(r \geq 0 \) and \(\tau > 0 \), then \(\omega \) is of Gevrey-class 1 (i.e., analytic), with uniform space analyticity radius at least \(\tau/3 \).

Proof. It is sufficient to show that \(\sum_{k \in {\mathbb Z}^3} e^{2r|k|/3} |\hat{\omega}_k|^2 < \infty \) (cf. [K1, LO]). This follows from \(\sum_{k \in {\mathbb Z}^3} e^{2r|k|/3} |\hat{\omega}_k|^2 \leq ||\omega||_{X_{r, \tau}}^2 \), a direct consequence of the triangle inequality and the mean-zero condition.

Similarly, one can show that \(X_{r, \tau} \) is equivalent to the subspace \(D((\sqrt{-\Delta})^r e^{r\sqrt{-\Delta}}) \) of Gevrey-class 1 which was used in [LO]. The following lemma is needed to prove Theorem 2.1.

Lemma 2.5. Let \(m = 1, 2, 3 \) and \(\omega \in Y_{r, \tau} \), where \(r > 7/2 \). If \(u = K \ast \omega \), where \(K \) is the periodic Biot-Savart kernel, then
\[
\left| (u \cdot \nabla \omega, \Lambda_m^r e^{2r\Lambda_m} \omega) \right| + \left| (\omega \cdot \nabla u, \Lambda_m^r e^{2r\Lambda_m} \omega) \right| \\
\leq C \left(\tau ||\nabla u||_{L^\infty} + \tau^2 ||\omega||_{H^r} + \tau^2 ||\omega||_{X_{r, \tau}} \right) ||\omega||_{Y_{r, \tau}} \left| \Lambda_m^{r+1/2} e^{r\Lambda_m} \omega \right|_{L^2} (2.2) \\
+ C \left(||\nabla u||_{L^\infty} ||\omega||_{X_{r, \tau}} + (1 + \tau) ||\omega||_{H^r}^2 \right) \left| \Lambda_m^r e^{r\Lambda_m} \omega \right|_{L^2},
\]
where the positive constant \(C \) depends only on \(r \).

We note that Lemma 2.5 is an improvement of Lemma 8 in [LO]. In the first term on the right of (2.2), the lowest power of \(\tau \) is paired with the better behaved quantity \(||\nabla u||_{L^\infty} \), while \(||\omega||_{H^r} \) is paired with \(\tau^2 \). This implies algebraic rather than exponential dependence of \(\tau(t) \) on the \(H^r \)-norm of \(\omega \).

We prove Theorem 2.1 by showing that if the initial datum is of Gevrey-class 1, the solution remains in this class as long as it exists. In the following \(C \) denotes a generic positive constant depending on \(r \).
Proof of Theorem 2.1. We note that if the initial datum ω_0 is real-analytic with radius of analyticity at least $\lambda r(0)$, with $\lambda > 1$, then $\omega_0 \in H^r$ and $\|e^{r(0)\sqrt{-\Delta}}\omega_0\|_{H^r} < \infty$ (cf. [K1 LO]). Therefore $\omega_0 \in X_{r(0)}$. We now prove that for all $0 \leq t < T$ the H^r-solution of (1.1)–(1.3) satisfies $\omega(\cdot, t) \in X_{r, \tau(t)}$, for an appropriate function $\tau(t)$. When no ambiguity arises, we suppress the time dependence of τ and ω on t.

By taking the L^2-inner product of (1.1) with $\Lambda \omega$, where $\Lambda = \Lambda_m e^{2r\lambda_m}$, we obtain

$$
\frac{1}{2} \frac{d}{dt} \| \Lambda_m e^{r\lambda_m} \omega \|^2_{L^2} = \tau \| \Lambda_m e^{r+1/2\lambda_m} \omega \|^2_{L^2} - (\nabla \omega, \Lambda_m e^{2r\lambda_m} \omega) + (\omega \cdot \nabla \omega, \Lambda_m e^{2r\lambda_m} \omega).
$$

The constant C in Lemma 2.5 can be taken large enough so that $\|\omega(\cdot, t)\|^2_{H^r} \leq \|\omega_0\|^2_{H^r} g(t)$ for all $0 \leq t < T$, where $g(t) = \exp \left(C \int_0^t \| \nabla u(\cdot, s) \|_{L^\infty} \, ds \right)$. In order to conclude the proof, we sum over $m = 1, 2, 3$ in (2.3) and use the estimate (2.2).

We obtain

$$
\frac{1}{2} \frac{d}{dt} \| \omega \|^2_{X_{r, \tau}} \leq C \left(\| \nabla u \|_{L^\infty} \| \omega \|_{X_{r, \tau}} + (1 + \tau) \| \omega \|^2_{H^r} \right) \| \omega \|_{X_{r, \tau}} + \left(\tau + C \tau + C \tau^2 \| \omega \|_{H^r} + C \tau^2 \| \omega \|_{X_{r, \tau}} \right) \| \omega \|^2_{Y_{r, \tau}}.
$$

If τ is such that the second term on the right of the above is negative, then τ is decreasing and

$$
\frac{d}{dt} \| \omega \|^2_{X_{r, \tau}} \leq C \| \nabla u \|_{L^\infty} \| \omega \|_{X_{r, \tau}} + C(1 + \tau(0)) \| \omega \|^2_{H^r}.
$$

By Gronwall’s inequality this implies

$$
\| \omega(\cdot, t) \|^2_{X_{r(0), \tau(t)}} \leq g(t) \left(\| \omega_0 \|_{X_{r(0), \tau(0)}} + C(1 + \tau(0)) \int_0^t \| \omega(\cdot, s) \|^2_{H^r} g(s)^{-1} \, ds \right) = A(t).
$$

A sufficient condition for the above to hold is that

$$
\tau + C \tau \| \nabla u \|_{L^\infty} + C \tau^2 \| \omega \|_{H^r} + C \tau^2 A(t) \leq 0,
$$

for all $t \geq 0$. It suffices to set

$$
\tau(t) = g(t)^{-1} \left(\tau(0)^{-1} + C \int_0^t \| \omega(\cdot, s) \|^2_{H^r} g(s)^{-1} \, ds \right)^{-1}.
$$

In particular, since $\| \omega(\cdot, t) \|^2_{H^r} \leq \| \omega_0 \|^2_{H^r} g(t)$, we obtain

$$
\tau(t) \geq g(t)^{-1} \left(C' + C'' t^2 \right)^{-1},
$$

where $C' = 2/\tau(0)$ and the constant C'' depends on $r, \tau(0), \| \omega_0 \|_{H^r}$, and $\| \omega_0 \|_{X_{r, \tau(0)}}$. \hfill \square

3. Proof of main lemma

Before we start the proof of Lemma 2.5 we introduce the operators

$$
\Lambda f(x) = \sum_{k \in \mathbb{Z}^d} |k| \hat{f}_k e^{ix \cdot k}
$$
and
\[H_m f(x) = \sum_{k \in \mathbb{Z}^3} \text{sgn}(k_m) \hat{f}_k e^{ix \cdot k}, \quad m = 1, 2, 3, \]
for all \(f \in H^1(\mathbb{T}^3) \). Here \(|k|_1 = |k_1| + |k_2| + |k_3|\). The following \(L^2\)-estimates follow directly from Plancherel’s theorem and the proofs are thus omitted.

Lemma 3.1. Let \(\omega \in X_{r, r}, \) for \(r \geq 0 \) and \(r \geq 1 \). Then for \(m = 1, 2, 3 \) we have
\[\| \Lambda_m^r \omega \|_{L^2} \leq \| \Lambda_m^{r-1} \omega \|_{L^2} \leq C \| \omega \|_{H_r} \]
and
\[\| \nabla H_m \Lambda_m^{r-1} e^{r \Lambda_m \omega} \|_{L^2} \leq \| \Lambda_m^{r-1} \omega \|_{L^2} \leq C \| \omega \|_{X_{r, r}}. \]

Since \(u = K * \omega \), an immediate consequence of the above is that \(\| \Lambda_m^{r+1} u \|_{L^2} \leq \| \Lambda_m^{r+1} u \|_{L^2} \leq C \| \omega \|_{H_r} \), for a positive constant \(C \).

Proof of Lemma 2.3. Let \(m \in \{ 1, 2, 3 \} \). In order to estimate \(\| (u \cdot \nabla \omega, \Lambda_m^{2r} e^{2r \Lambda_m \omega}) \| \), we appeal to the cancellation property \((u \cdot \nabla \omega, \Lambda_m^{r} e^{r \Lambda_m \omega}, \Lambda_m^{r} e^{r \Lambda_m \omega}) = 0\). Using Plancherel’s theorem we obtain
\[
(u \cdot \nabla \omega, \Lambda_m^{2r} e^{2r \Lambda_m \omega}) = (u \cdot \nabla \omega, \Lambda_m^{2r} e^{2r \Lambda_m \omega}) - (u \cdot \nabla \Lambda_m^{r} e^{r \Lambda_m \omega}, \Lambda_m^{r} e^{r \Lambda_m \omega})
\]
\[= i(2\pi)^3 \sum_{j+k+l=0} (|l_m|^r |e^{r |l_m|}| - |k_m|^r |e^{r |k_m|}|) \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r |e^{r |l_m|}| \hat{\omega}_l
\]
\[= i(2\pi)^3 \sum_{j+k+l=0} (|l_m|^r - |k_m|^r) e^{r |k_m|} \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r |e^{r |l_m|}| \hat{\omega}_l
\]
\[+ i(2\pi)^3 \sum_{j+k+l=0} (e^{r |l_m|} - e^{r |k_m|}) |l_m|^r |e^{r |l_m|}| \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r |e^{r |l_m|}| \hat{\omega}_l = T_1 + T_2, \]
with \(j, k, l \in \mathbb{Z}^3 \). Recall that \(\hat{\omega}_0 = \hat{u}_0 = 0 \). The first term on the far right side of the above is rewritten using the mean value theorem as
\[
T_1 = ir(2\pi)^3 \sum_{j+k+l=0} (|l_m| - |k_m|) ((\theta_{m,k,l}|l_m| + (1 - \theta_{m,k,l})|k_m|)^{r-1} - |k_m|^{r-1})
\]
\[\times e^{r |k_m|} \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r |e^{r |l_m|}| \hat{\omega}_l
\]
(3.2)
\[+ ir(2\pi)^3 \sum_{j+k+l=0} (|l_m| - |k_m|) |k_m|^{r-1} e^{r |k_m|} \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r |e^{r |l_m|}| \hat{\omega}_l, \]
for some \(\theta_{m,k,l} \in (0, 1) \). Since \(j + k + l = 0 \), we have
\[\|(l_m) - (k_m)\) ((\theta_{m,k,l}|l_m| + (1 - \theta_{m,k,l})|k_m|)^{r-1} - |k_m|^{r-1})
\]
\[\leq C |m|^2 (|m|^{r-2} + |k_m|^{r-2}). \]
(3.3)
The exponential factor is bounded as \(e^{r |k_m|} \leq e + r^2 |k_m|^2 e^{r |k_m|} \), and \(|u_j \cdot k| \leq C|u_j||k|_1 \), for a positive constant \(C \). To estimate the second term on the right of (3.2) we use the decomposition
\[|j_m + k_m| - |k_m| = j_m \text{sgn}(k_m) + 2(j_m + k_m) \text{sgn}(j_m) \chi\{\text{sgn}(k_m + j_m) \text{sgn}(k_m) = -1\}. \]
(3.4)
(A version of the latter identity was also used by Lemarié-Rieusset in [L1], [L2] for proving \(L^p\)-analyticity of solutions to the Navier-Stokes equations.) The first term
in the decomposition (3.4) is treated using the Fourier inversion theorem. On the region \{ \sgn(k_m + j_m) \sgn(k_m) = -1 \} we have 0 \leq |k_m| \leq |j_m| and thus in this region \|l_m| - |k_m| \| |k_m|^{-r-1} \leq C|j_m|^{-r}. We have thus proven
\[
|T_1| \leq C \sum_{j+k+l=0} \left((j_m|^r + |j_m|^2|k_m|^{-r-2})(e + \tau^2|k_m|^2e^{\tau|k_m|})|\hat{u}_j||k|_1|\hat{\omega}_k||l_m|^r e^{\tau|l_m|} |\hat{\omega}_l| \right.
\]
\[
+ C \left| (\partial_m u \cdot \nabla H_m \Lambda_m^{r-1} e^{\tau \Lambda_m \omega}, \Lambda_m^{r} e^{\tau \Lambda_m \omega}) \right|
\]
\[
\leq C \left(\|\omega\|^2_{H^r} + \|\nabla u\|_{L^\infty} \|\omega\|_{Y_{r,r}} \right) \|\Lambda_m^{r+1/2} e^{\tau \Lambda_m \omega}\|_{L^2}.
\]
(3.5)
\[
+ C \tau^2 \|\omega\|_{H^r} \|\omega\|_{Y_{r,r}} \|\Lambda_m^{r+1/2} e^{\tau \Lambda_m \omega}\|_{L^2}.
\]
In the second inequality we have appealed to the estimates in Lemma 3.1, \(r > 7/2, \) and \(|k_m|^{1/2} \leq |j_m|^{1/2} + |l_m|^{1/2}. \) Returning to (3.1) we write \(T_2 \) as
\[
T_2 = i(2\pi)^3 \sum_{j+k+l=0} \left(e^{\tau(|l_m| - |k_m|)} \left(1 - \tau(|l_m| - |k_m|) \right) |l_m|^{-r-1/2} e^{\tau|k_m|} \right.
\]
\[
\times \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r e^{\tau|l_m|} |\hat{\omega}_l|
\]
\[
+ i(2\pi)^3 \sum_{j+k+l=0} \tau(|l_m| - |k_m|)|l_m|^{-r-1/2} e^{\tau|k_m|} \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r e^{\tau|l_m|} |\hat{\omega}_l|
\]
\[
+ i(2\pi)^3 \sum_{j+k+l=0} \tau(|l_m| - |k_m|)|l_m|^{-r-1/2} - |k_m|^{-r-1/2} e^{\tau|k_m|} \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r e^{\tau|l_m|} |\hat{\omega}_l|
\]
\[
\times \hat{u}_j \cdot k \hat{\omega}_k |l_m|^r e^{\tau|l_m|} |\hat{\omega}_l|.
\]
(3.6)
The three terms on the right are treated as follows. Since \(|e^{\tau} - 1 - x| \leq x^2 e^{|x|}, \) for all \(x \in \mathbb{R}, \) and \(|l_m|^{-r-1/2} \leq C \left(|j_m|^{-r-1/2} + |k_m|^{-r-1/2} \right), \) we obtain that the first term is bounded by
\[
C \tau^2 \|\omega\|_{Y_{r,r}} \|\omega\|_{Y_{r,r}} \|\Lambda_m^{r+1/2} e^{\tau \Lambda_m \omega}\|_{L^2}.
\]
The second term in the definition of \(T_2 \) above is treated using the decomposition (3.4). Note that in the region \{ \sgn(k_m + j_m) \sgn(k_m) = -1 \} we have 0 \leq |k_m| \leq |j_m| and 0 \leq |l_m| \leq 2|j_m|, and hence \(e^{\tau|k_m|} \leq 1 + \tau |j_m| e^{\tau|j_m|}. \) Therefore, the second term in (3.6) is bounded by
\[
C \tau \sum_{j+k+l=0} \left(|j_m|^{-1/2} (1 + \tau |j_m| e^{\tau|j_m|}) |\hat{u}_j||k_1| |\hat{\omega}_k||l_m|^{-r-1/2} e^{\tau|l_m|} |\hat{\omega}_l|
\]
\[
+ C \tau \left| (\partial_m u \cdot \nabla H_m \Lambda_m^{r-1/2} e^{\tau \Lambda_m \omega}, \Lambda_m^{r+1/2} e^{\tau \Lambda_m \omega}) \right|
\]
\[
\leq C \tau \|\omega\|^2_{H^r} \|\Lambda_m^{r+1/2} e^{\tau \Lambda_m \omega}\|_{L^2}.
\]
(3.8)
Using \(e^{\tau|k_m|} \leq 1 + \tau |k_m| e^{\tau|k_m|}, \) the mean value theorem, and the triangle inequality, we obtain that the third term on the right side of (3.8) is bounded by
\[
C \tau \|\omega\|^2_{H^r} \|\Lambda_m^{r+1/2} e^{\tau \Lambda_m \omega}\|_{L^2}.
\]
(3.9)
Collecting (3.7) and (3.9) and the estimate on \(T_1 \) obtained earlier, we have proven that the term \(|(u \cdot \nabla \omega, \Lambda_m^{2r} e^{2\tau \Lambda_m \omega})| \) is bounded by the right of (2.2).
The vorticity stretching term \(\omega \cdot \nabla u, \Lambda_m^r e^{r \Lambda_m^e \omega} \) is treated similarly. We do not use the cancelation property, but instead subtract \(\omega \cdot \nabla \Lambda_m^r e^{r \Lambda_m^e \omega} u, \Lambda_m^r e^{r \Lambda_m^e \omega} \) + \((\Lambda_m^r e^{r \Lambda_m^e \omega} \cdot \nabla u, \Lambda_m^r e^{r \Lambda_m^e \omega})\). By Hölder’s inequality and Lemma 3.3 we have
\[
\left| (\omega \cdot \nabla \Lambda_m^r e^{r \Lambda_m^e \omega} u, \Lambda_m^r e^{r \Lambda_m^e \omega}) \right| + \left| (\Lambda_m^r e^{r \Lambda_m^e \omega} \cdot \nabla u, \Lambda_m^r e^{r \Lambda_m^e \omega}) \right|
\leq C \left\| \nabla u \right\|_{L^\infty} \left\| \omega \right\|_{X_{r,\tau}} \left\| \Lambda_m^r e^{r \Lambda_m^e \omega} \right\|_{L^2},
\]
for a positive constant \(C \) depending only on \(r \). Thus in order to estimate the term
\[
(\omega \cdot \nabla u, \Lambda_m^r e^{r \Lambda_m^e \omega}) - (\omega \cdot \nabla \Lambda_m^r e^{r \Lambda_m^e \omega} u, \Lambda_m^r e^{r \Lambda_m^e \omega}) - (\Lambda_m^r e^{r \Lambda_m^e \omega} \cdot \nabla u, \Lambda_m^r e^{r \Lambda_m^e \omega})
\]
(3.10)

\[
i(2\pi)^3 \sum_{j+k+l=0} (|l_m^r e^{r |l_m|} - |k_m^r e^{r |k_m|}|) \hat{\omega}_j \cdot k \hat{u}_k |l_m^r e^{r |l_m|} | \hat{\omega}_l
\]
+ \(i(2\pi)^3 \sum_{j+k+l=0} (|l_m^r - |k_m^r e^{r |k_m|}|) \hat{\omega}_j \cdot k \hat{u}_k |l_m^r e^{r |l_m|} | \hat{\omega}_l
\]
+ \(i(2\pi)^3 \sum_{j+k+l=0} |j_m^r e^{r |l_m|} - e^{r |j_m^r|}| \hat{\omega}_j \cdot k \hat{u}_k |l_m^r e^{r |l_m|} | \hat{\omega}_l
\)

where \(j, k, l \in \mathbb{Z}^3 \). We rewrite the left side of (3.10) as
\[
i(2\pi)^3 \sum_{j+k+l=0} (|l_m^r - |j_m^r e^{r |j_m|}| e^{r |k_m|}|) \hat{\omega}_j \cdot k \hat{u}_k |l_m^r e^{r |l_m|} | \hat{\omega}_l
\]
+ \(i(2\pi)^3 \sum_{j+k+l=0} (|l_m^r - |k_m^r e^{r |k_m|}| e^{r |j_m|}|) \hat{\omega}_j \cdot k \hat{u}_k |l_m^r e^{r |l_m|} | \hat{\omega}_l
\]
+ \(i(2\pi)^3 \sum_{j+k+l=0} |j_m^r e^{r |l_m|} - e^{r |j_m^r|}| \hat{\omega}_j \cdot k \hat{u}_k |l_m^r e^{r |l_m|} | \hat{\omega}_l
\)

The above terms are estimated in absolute value as follows. The mean value theorem and \(e^x \leq 1 + xe^x \), for \(x \geq 0 \), imply
(3.11) \[
\left| (|l_m^r - |j_m^r e^{r |j_m|}| e^{r |k_m|}|) \right| \leq C \tau (|k_m^r| |j_m^r| + |k_m^r| |j_m^r| e^{r |j_m|})
\]
Combined with \(e^x \leq 1 + xe^x \), for all \(x \geq 0 \), and the triangle inequality, (3.11) gives
\[
|\bar{T}_1| \leq C \tau \left\| \omega \right\|_{H^r}^2 \left\| \Lambda_m^r e^{r \Lambda_m^e \omega} \right\|_{L^2}
\]
\[
+ C \tau^2 (\left\| \omega \right\|_{H^r} + \left\| \omega \right\|_{X_{r,\tau}}) \left\| \omega \right\|_{Y_{r,\tau}} \left\| \Lambda_m^{r+1/2} e^{r \Lambda_m^e \omega} \right\|_{L^2}.
\]
Similarly, by the mean value theorem we have
\[
\left| (|l_m^r - |k_m^r|) - |j_m^r| \right| \leq C j_m^r (|j_m^r| - 1) + |j_m^r|
\]
Since \(e^x \leq e + xe^x \), for all \(x \geq 0 \), the above implies
\[
|\bar{T}_2| \leq C \left\| \omega \right\|_{H^r}^2 \left\| \Lambda_m^r e^{r \Lambda_m^e \omega} \right\|_{L^2} + C \tau^2 (\left\| \omega \right\|_{H^r} + \left\| \omega \right\|_{X_{r,\tau}}) \left\| \Lambda_m^{r+1/2} e^{r \Lambda_m^e \omega} \right\|_{L^2}.
\]
The third term \(\bar{T}_3 \) is bounded similarly to the first one, but instead of (3.11) we use the estimate \(|e^{r |l_m|} - e^{r |j_m|}| \leq C \tau |k_m^r| e^{r |j_m|} e^{r |k_m|} \) and obtain
\[
|\bar{T}_3| \leq C \tau \left\| \omega \right\|_{H^r}^2 \left\| \Lambda_m^r e^{r \Lambda_m^e \omega} \right\|_{L^2}
\]
\[
+ C \tau^2 (\left\| \omega \right\|_{H^r} + \left\| \omega \right\|_{X_{r,\tau}}) \left\| \omega \right\|_{Y_{r,\tau}} \left\| \Lambda_m^{r+1/2} e^{r \Lambda_m^e \omega} \right\|_{L^2}.
\]
This concludes the proof of the lemma.

\[\square \]

\textbf{Remark 3.2.} By working in \(X_{r,\tau} \) = \(\bigcap_{m=1}^{3} D(\Lambda_m^r e^{r \Lambda_m^e}) \), for \(s \in (0, 1) \), one can show that the radius of Gevrey-class \(s \) regularity (cf. [FT], [LO] for a definition of the Gevrey classes) of the smooth solution to (1.1), (1.3) satisfies the same lower bound
as in Theorem 2.1, given that the initial datum is of Gevrey-class s. As in Foias and Temam [FT] the proof carries over directly from the analytic case $s = 1$ and relies on the fact that for $s \leq 1$ we have $|k + j|^s \leq |k|^s + |j|^s$, and for $s < 1$ we additionally use

$$||l_m||^s - |k_m||^s \leq C ||l_m||^s - |k_m||^s \leq \frac{1}{||l_m||^{1-s} + |k_m||^{1-s}},$$

where C is a positive constant depending only on s. The latter inequality is for instance used to estimate the term T_2 defined in (3.6). Identity (3.4) still needs to be used in the Gevrey case.

References

CTV. P. Constantin, E.S. Titi, and J. Vukadinović, Dissipativity and Gevrey regularity of a Smoluchowski equation, Indiana Univ. Math. J. 54 (2005), no. 4, 949–969. MR2164412 (2006e:35162)

FT1. A.B. Ferrari and E.S. Titi, Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Differential Equations 23 (1998), no. 1–2, 1–16. MR1608488 (99a:35116)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, 3620 S. VERMONT AVE, LOS ANGELES, CALIFORNIA 90089

E-mail address: kukavica@usc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, 3620 S. VERMONT AVE, LOS ANGELES, CALIFORNIA 90089

E-mail address: vicol@usc.edu