Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Morasses and finite support iterations


Author: Bernhard Irrgang
Journal: Proc. Amer. Math. Soc. 137 (2009), 1103-1113
MSC (2000): Primary 03E05, 03E35, 03E40
DOI: https://doi.org/10.1090/S0002-9939-08-09525-7
Published electronically: August 28, 2008
MathSciNet review: 2457452
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a method of constructing a forcing along a simplified $ (\kappa,1)$-morass such that the forcing satisfies the $ \kappa$-chain condition. Alternatively, this may be seen as a method to thin out a larger forcing to get a chain condition. As an application, we construct a ccc forcing that adds an $ \omega_2$-Suslin tree. Related methods are Shelah's historic forcing and Todorcevic's $ \rho$-functions.


References [Enhancements On Off] (What's this?)

  • 1. James E. Baumgartner and Saharon Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Logic 33 (1987), no. 2, 109-129. MR 874021 (88d:03100)
  • 2. Keith J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984. MR 750828 (85k:03001)
  • 3. Hans-Dieter Donder, Another look at gap-$ 1$ morasses, Recursion theory (Ithaca, N.Y., 1982), Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 223-236. MR 791060 (86k:03046)
  • 4. Sy D. Friedman, Fine structure and class forcing, de Gruyter Series in Logic and its Applications, vol. 3, Walter de Gruyter & Co., Berlin, 2000. MR 1780138 (2001g:03001)
  • 5. Bernhard Irrgang, Constructing $ (\omega_1, \beta)$-morasses for $ \omega _1 \leq \beta$, unpublished.
  • 6. -, Proposing $ (\omega_1, \beta)$-morasses for $ \omega _1 \leq \beta$, unpublished.
  • 7. -, Kondensation und Moraste, dissertation, Universität München, 2002.
  • 8. Ronald B. Jensen, Box implies GKH, hand-written notes.
  • 9. -, Higher-gap morasses, hand-written notes, 1972/73.
  • 10. I. Juhász and L. Soukup, How to force a countably tight, initially $ \omega\sb 1$-compact and noncompact space?, Topology Appl. 69 (1996), no. 3, 227-250. MR 1382294 (97c:54004)
  • 11. Piotr Koszmider, On strong chains of uncountable functions, Israel J. Math. 118 (2000), 289-315. MR 1776085 (2001g:03091)
  • 12. Kenneth Kunen, Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1980. MR 597342 (82f:03001)
  • 13. Juan Carlos Martınez, A consistency result on thin-very tall Boolean algebras, Israel J. Math. 123 (2001), 273-284. MR 1835300 (2003c:03090)
  • 14. Charles Morgan, Morasses, square and forcing axioms, Ann. Pure Appl. Logic 80 (1996), no. 2, 139-163. MR 1402976 (97j:03101)
  • 15. -, Higher gap morasses. IA. Gap-two morasses and condensation, J. Symbolic Logic 63 (1998), no. 3, 753-787. MR 1649060 (2000b:03127)
  • 16. -, Local connectedness and distance functions, Set theory, Trends Math., Birkhäuser, Basel, 2006, pp. 345-400. MR 2267157 (2007h:03104)
  • 17. Mariusz Rabus, An $ \omega\sb 2$-minimal Boolean algebra, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3235-3244. MR 1357881 (96j:03070)
  • 18. R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. of Math. (2) 94 (1971), 201-245. MR 0294139 (45:3212)
  • 19. Lee Stanley, L-like models of set theory: Forcing, combinatorial principles, and morasses, Dissertation, UC Berkeley, 1977.
  • 20. -, A short course on gap-one morasses with a review of the fine structure of $ L$, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 197-243. MR 823781 (87f:03147)
  • 21. S. Tennenbaum, Souslin's problem, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 60-63. MR 0224456 (37:55)
  • 22. Stevo Todorčević, Coherent sequences, preprint.
  • 23. -, Directed sets and cofinal types, Trans. Amer. Math. Soc. 290 (1985), no. 2, 711-723. MR 792822 (87a:03084)
  • 24. -, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), no. 3-4, 261-294. MR 908147 (88i:04002)
  • 25. -, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949 (90d:04001)
  • 26. Boban Veličković, Forcing axioms and stationary sets, Adv. Math. 94 (1992), no. 2, 256-284. MR 1174395 (93k:03045)
  • 27. Dan Velleman, Simplified morasses, J. Symbolic Logic 49 (1984), no. 1, 257-271. MR 736620 (85i:03162)
  • 28. -, Souslin trees constructed from morasses, Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 219-241. MR 763903 (86b:03066)
  • 29. -, Gap-$ 2$ morasses of height $ \omega$, J. Symbolic Logic 52 (1987), no. 4, 928-938. MR 916398 (88k:03103)
  • 30. -, Simplified gap-$ 2$ morasses, Ann. Pure Appl. Logic 34 (1987), no. 2, 171-208. MR 890600 (88d:03069)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03E05, 03E35, 03E40

Retrieve articles in all journals with MSC (2000): 03E05, 03E35, 03E40


Additional Information

Bernhard Irrgang
Affiliation: Mathematisches Institut, Universität Bonn, Beringstrasse 1, 53115 Bonn, Germany

DOI: https://doi.org/10.1090/S0002-9939-08-09525-7
Received by editor(s): October 6, 2006
Received by editor(s) in revised form: April 22, 2007, and February 1, 2008
Published electronically: August 28, 2008
Communicated by: Julia Knight
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society