Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rational homotopy of the polyhedral product functor


Authors: Yves Félix and Daniel Tanré
Journal: Proc. Amer. Math. Soc. 137 (2009), 891-898
MSC (2000): Primary 13F55, 55P62, 55U10
DOI: https://doi.org/10.1090/S0002-9939-08-09591-9
Published electronically: September 24, 2008
MathSciNet review: 2457428
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (X,\ast)$ be a pointed CW-complex, $ K$ be a simplicial complex on $ n$ vertices and $ X^K$ be the associated polyhedral power. In this paper, we construct a Sullivan model of $ X^K$ from $ K$ and from a model of $ X$.

Let $ \mathcal{F}(K,X)$ be the homotopy fiber of the inclusion $ X^K\to X^n$. Recent results of Grbić and Theriault, on one side, and of Denham and Suciu, on the other side, show the diversity of the possible homotopy types for $ \mathcal{F}(K,X)$. Here, we prove that the corresponding map between Sullivan models is Golod attached, generalizing a result of J. Backelin. This property is deduced from the existence of a succession of fibrations whose fibers are suspensions.

We consider also the Lusternik-Schnirelmann category of $ X^K$. In the case that $ \operatorname{cat}X^n=n\,\operatorname{cat}X$, we prove that $ \operatorname{cat}X^K =(\operatorname{cat}X)(1+\dim K)$.

Finally, we mention that this work is written in the case of a sequence of pairs, $ \underline{X}=(X_i,A_i)_{1\leq i\leq n}$, as in a recent work of Bahri, Bendersky, Cohen and Gitler.


References [Enhancements On Off] (What's this?)

  • 1. Luchezar Avramov and Stephen Halperin, Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 1-27. MR 846435 (87k:55015)
  • 2. Luchezar L. Avramov, Golod homomorphisms, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 59-78. MR 846439 (87m:13014)
  • 3. Jörgen Backelin, Les anneaux locaux à relations monomiales ont des séries de Poincaré-Betti rationnelles, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 607-610. MR 686351 (85a:13008)
  • 4. -, Monomial ideal residue class rings and iterated Golod maps, Math. Scand. 53 (1983), no. 1, 16-24. MR 733934 (85h:13011)
  • 5. A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, The polyhedral product functor: a method of computation for moment-angle complexes, arrangements and related spaces, 2007, arXiv: 0711.4689
  • 6. Israel Berstein, On the Lusternik-Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 129-134. MR 0400212 (53:4047)
  • 7. Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, vol. 24, American Mathematical Society, Providence, RI, 2002. MR 1897064 (2003e:57039)
  • 8. Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
  • 9. Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451. MR 1104531 (92i:52012)
  • 10. Graham Denham and Alexander I. Suciu, Moment-angle complexes, monomial ideals and Massey products, Pure Appl. Math. Q. 3 (2007), no. 1, 25-60. MR 2330154
  • 11. Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1-38. MR 664027 (84h:55011)
  • 12. Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847 (2002d:55014)
  • 13. Yves Félix and Daniel Tanré, Formalité d'une application et suite spectrale d'Eilenberg-Moore, Algebraic topology--rational homotopy (Louvain-la-Neuve, 1986), Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 99-123. MR 952575 (89i:55007)
  • 14. Jelena Grbić and Stephen Theriault, The homotopy type of the complement of a coordinate subspace arrangement, Topology 46 (2007), no. 4, 357-396. MR 2321037
  • 15. Michael Mather, Pull-backs in homotopy theory, Canad. J. Math. 28 (1976), 225-263. MR 0402694 (53:6510)
  • 16. Dietrich Notbohm and Nigel Ray, On Davis-Januszkiewicz homotopy types. I. Formality and rationalisation, Algebr. Geom. Topol. 5 (2005), 31-51 (electronic). MR 2135544 (2006a:55016)
  • 17. Neil Strickland, Notes on toric spaces, preprint, 2002.
  • 18. Micheline Vigué-Poirrier, Formalité d'une application continue, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 16, A809-A812. MR 558804 (80k:55043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13F55, 55P62, 55U10

Retrieve articles in all journals with MSC (2000): 13F55, 55P62, 55U10


Additional Information

Yves Félix
Affiliation: Département de Mathématiques, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium
Email: felix@math.ucl.ac.be

Daniel Tanré
Affiliation: Département de Mathematiques, UMR 8524, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
Email: Daniel.Tanre@univ-lille1.fr

DOI: https://doi.org/10.1090/S0002-9939-08-09591-9
Received by editor(s): January 22, 2008
Received by editor(s) in revised form: March 21, 2008
Published electronically: September 24, 2008
Communicated by: Paul Goerss
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society