Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the singularity of random matrices with independent entries


Authors: Laurent Bruneau and François Germinet
Journal: Proc. Amer. Math. Soc. 137 (2009), 787-792
MSC (2000): Primary 15A52
DOI: https://doi.org/10.1090/S0002-9939-08-09595-6
Published electronically: October 22, 2008
MathSciNet review: 2457415
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider $ n$ by $ n$ real matrices whose entries are non-degenerate random variables that are independent but not necessarily identically distributed, and show that the probability that such a matrix is singular is $ O(1/\sqrt{n})$. The purpose of this paper is to provide a short and elementary proof of this fact using a Bernoulli decomposition of arbitrary non-degenerate random variables.


References [Enhancements On Off] (What's this?)

  • [AGKW] M. Aizenman, F. Germinet, A. Klein, S. Warzel, On Bernoulli decompositions for random variables, concentration bounds and spectral localization, preprint arXiv:0707.0095v1 [math.PR], to appear in Prob. Th. and Rel. Fields.
  • [B] B. Bollobas, Random graphs, Academic Press, 1985. MR 809996 (87f:05152)
  • [KKoS] J. Kahn, J. Komlós, E. Szemerédi, On the probability that a random $ \pm1$-matrix is singular, J. Amer. Math. Soc. 8, 223-240 (1995). MR 1260107 (95c:15047)
  • [Ko1] J. Komlós, On the determinant of $ (0,1)$ matrices, Studia. Sci. Math. Hungar. 2, 7-21 (1967). MR 0221962 (36:5014)
  • [Ko2] J. Komlós, On the determinant of random matrices, Studia. Sci. Math. Hungar. 3, 387-399 (1968). MR 0238371 (38:6647)
  • [Sl] A. Slinko, A generalization of Komlós's theorem on random matrices, New Zealand J. Math. 30, no. 1, 81-86 (2001). MR 1839526 (2002c:15046)
  • [TV1] T. Tao, V. Vu, On random $ \pm1$ matrices: Singularity and determinant, Random Structures and Algorithms 28, 1-23 (2006). MR 2187480 (2006g:15048)
  • [TV2] T. Tao, V. Vu, On the singularity probability of random Bernoulli matrices, J. Amer. Math. Soc. 20, 603-628 (2007). MR 2291914 (2008h:60027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 15A52

Retrieve articles in all journals with MSC (2000): 15A52


Additional Information

Laurent Bruneau
Affiliation: Département de Mathématiques, Université de Cergy-Pontoise, CNRS UMR 8088,F-95000 Cergy-Pontoise, France
Email: laurent.bruneau@u-cergy.fr

François Germinet
Affiliation: Département de Mathématiques, Université de Cergy-Pontoise, CNRS UMR 8088, Institut Universitaire de France, F-95000 Cergy-Pontoise, France
Email: francois.germinet@u-cergy.fr

DOI: https://doi.org/10.1090/S0002-9939-08-09595-6
Received by editor(s): October 17, 2007
Published electronically: October 22, 2008
Communicated by: Walter Craig
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society